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We use non-equilibrium molecular dynamics oscillatory shear simulations to study frequency-

dependent viscoelastic damping spanning nearly six decades in frequency range (MHz to THz), in

a wide range of model glasses including binary glasses such as Cu-Zr metallic glass (MG),

Wahnstr€om glass and amorphous silica, and unary glasses, namely, Dzugutov glass and amorphous

silicon. First, for the Cu-Zr MG, we elucidate the role of quench rate, number of shear cycles, shear

amplitude, and shear temperature on the damping characteristics. We observe striking commonali-

ties in damping characteristics for all glasses studied—(i) a peak in the loss modulus in the high-

frequency regime (�THz) and (ii) persistent damping in the low-frequency regime (extending

down to 10 s of MHz). The high-frequency peak is seen to overlap with the range of natural vibra-

tional frequencies for each glass, and arises from coupling between the excited harmonic vibra-

tional modes. On the other hand, persistent damping at intermediate and low frequencies is shown

to be a result of long time-scale local, irreversible deformation. Published by AIP Publishing.
https://doi.org/10.1063/1.5006036

I. INTRODUCTION

The configurationally frozen liquid-like nature of glasses

plays an important role for a wide range of applications.

Glasses can be formed from both inorganic materials such as

oxides and metallic alloys, and organic entities such as poly-

mers. Furthermore, one can classify inorganic glasses based

on their structure, into either “network glasses” such as silica-

based glasses, or “non-network” glasses such as metallic

glasses. Oxide glasses, most notably, based on silica have

been used for a variety of applications spanning multiple mil-

lennia, primarily for decorative purposes. More recently,

silica-based glasses with additions such as sodium, boron,

lead, aluminum, calcium, etc. have been designed for electri-

cal, chemical, and optical properties.1 On the other hand,

glasses for structural applications really picked up with the

discovery of metallic glass (MG) by Duwez and co-workers2

and subsequent efforts in engineering processing techniques

and compositional studies.3–5 Deformation mechanisms are

usually influenced by the interplay of temperature and strain-

rates, among other factors, and have been studied extensively

for glasses, in particular, for bulk metallic glasses.6–9 A cru-

cial aspect in this development has been the progress in the

study of structure-property relations in glasses,10–14 under-

standing of which has led to glasses with exceptional mechan-

ical properties such as enhanced plasticity,9,15,16 strength,16,17

and fracture toughness.18

Glasses are also candidate materials for applications in

mechanical damping. In this context, damping is time-

dependent (or inversely, frequency-dependent), and typically

involves structural relaxations due to inherent heterogene-

ities in glass (often termed as anelastic relaxation).19,20

Anelastic relaxation could also arise due to diffusion of spe-

cies such as hydrogen trapped within glass, and has been

used in tuning the damping properties of hydrogen-loaded

bulk metallic glasses.21–23 Anelastic relaxation can be

thought of as a special case of the broader time-dependent

viscoelastic damping (referred to alternatively as the internal

friction, denoted as Q�1, the ratio of energy dissipated to

stored elastic energy over a cycle of deformation).24

Viscoelastic damping has its origin in atomic-level inter-

actions and structural features within the material that result

in an out-of-sync relation between stress and strain under

cyclic deformation. These mechanisms are strongly dependent

on the applied shear frequency (or rate). Widely different

mechanisms are usually at play while contributing to damping

at different frequencies25–27 and have been extensively stud-

ied for polymeric systems.28 While several experimental stud-

ies have focused on characterization and mechanisms of

damping via dynamic mechanical analysis,29–31 the frequency

range studied cannot exceed a few 100 Hz due to experimen-

tal limitations. A mechanistic understanding of viscoelastic

damping in inorganic glasses at frequency ranges extending

up to THz is currently lacking, which is the focus of this

work.

Structural relaxation in glasses under static conditions,

is known to be greatly influenced by the deformation rate,

especially at low frequencies, and over long time-scales.32

Going up the frequency scale, devices such as micromechan-

ical and nanomechanical resonators require large quality fac-

tors (low damping),33–35 operate up to GHz frequencies. The

upper end of the frequency spectrum (THz range) is relevant

for high-frequency damping properties in phononic intercon-

nects,38 and attenuation of sound.36,37 In this regime, damp-

ing is a result of coupling between harmonic vibrational

modes.39–42a)Electronic mail: keblip@rpi.edu
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Experimentally, direct measurement of viscoelastic

damping is performed via the dynamical mechanical analy-

sis.43 In this technique, cyclic loading in the form of an oscil-

latory torque is applied to probe the stress-strain response to

determine the complex modulus. Forces are applied either

mechanically (routinely employed for studying soft matter28

and sometimes for hard materials44,45) where typical fre-

quencies are limited to a �100 s of Hz, or via electromag-

netic forces46,47 to attain larger frequencies (�104 Hz).

At even higher frequencies approaching vibrational fre-

quencies (in the THz range), characterizing mechanical

response via direct dynamical mechanical analysis becomes

experimentally unattainable. However, three common exper-

imental techniques that can be used to study mechanical

relaxation at high frequencies include (i) Inelastic X-ray

Scattering (IXS), (ii) Brillouin Light Scattering (BLS) that

both utilize photon-phonon scattering processes, and (iii)

broadband dielectric loss spectroscopy. IXS has been used

extensively to measure sound attenuation coefficients.48

Using BLS, one can typically measure elastic constants

including shear modulus from phonon velocities and derive

the phonon damping parameter (which is proportional to the

acoustic attenuation) from the full width at half maximum of

the spectra.49–51 However, extending this to quantify dynamic

mechanical damping from these techniques is not straightfor-

ward. Dielectric spectroscopy, on the other hand can yield

valuable molecular level information in non-conducting mate-

rials including a wide variety of glass forming liquids.52–54

Using this technique, relaxation processes such as a and b
relaxations have been studied extensively in many glasses.55,56

The frequency-dependent real and imaginary components of

the dielectric permittivity, and consequently, the loss tangent,

are obtained by relaxation of charged entities over multiple

decades in the frequency range (from �10�6 Hz, up to THz

and beyond). This is achieved by using a combination of

techniques (such as direct measurement of capacitance and

time-domain techniques at frequencies up to kHz, frequency

response analysis for MHz, and quasi-optical spectrometers

for THz frequencies) to probe the broadband frequency spec-

trum.54 Though this technique has been very useful in under-

standing frequency-dependent relaxation in glasses, it requires

a combination of a sophisticated experimental setup, and can

only be employed for non-conducting materials. Besides,

mechanisms responsible for dielectric and viscoelastic losses

are often different.57 In this context, molecular-level simula-

tions are extremely useful to study viscoelastic damping over

a wide range of shear frequencies, particularly in the high fre-

quency (GHz to THz) regime. Molecular dynamics deforma-

tion studies have been used extensively14 to study mechanical

properties including tensile58,59 and compressive deforma-

tion,60 indentation,61 fatigue,62 and plastic deformation under

shear.63,64

We had previously demonstrated that oscillatory shear

based molecular dynamics simulations can be used to study

frequency-dependent viscoelastic damping in hard materials

such as crystalline composites comprising soft and stiff crys-

talline phases.25 We showed that a characteristic peak in

frequency-dependent damping arises in the THz regime from

phonon-phonon anharmonic coupling, and essentially decays

to zero (i.e., behaves elastically) as frequency is lowered. In

this work, we present non-equilibrium (NE) oscillatory shear

molecular dynamics simulations to study mechanisms behind

frequency-dependent loss moduli (used synonymously with

viscoelastic damping or mechanical damping) in various

model glasses, over a wide range of frequencies (spanning

nearly six decades). Compared to the crystalline case, we

uncover novel damping mechanisms in glasses – at high

frequencies (�THz), a characteristic peak in damping is

observed. While for crystalline systems, the primary mecha-

nism for high-frequency damping was shown to be due to

anharmonic coupling between vibrational modes,25 the pri-

mary damping mechanism in glasses is harmonic, with the

oscillatory shear exciting the vibrational eigen modes corre-

sponding to the driving frequency. At intermediate and lower

frequencies (�10 s of MHz), persistent damping (albeit much

lower in magnitude compared to the THz range) results from

long time-scale, local irreversible deformation. We emphasize

here that the “low frequency” response probed in this work

(�MHz) is in the context of the frequency regime studied; it

is still orders of magnitude larger than the experimental

capacity (few 100 s of Hz).

The organization of the paper is as follows: the oscilla-

tory shear methodology to characterize damping and details

of model structures are presented in Sec. II. In Sec. III, we

present an extensive analysis of various factors that affect

damping in the Cu-Zr metallic glass, as an example system.

Section IV describes the commonalities in damping behavior

over a wide range of frequencies, for a range of glasses.

Section V contains a discussion on the mechanisms of damp-

ing, and conclusions are presented in Sec. VI.

II. SIMULATION METHODOLOGY AND MODEL
STRUCTURES

A. Oscillatory shear deformation

We study viscoelastic damping in model glasses by the

application of non-equilibrium oscillatory shear deformation,

within the framework of molecular dynamics. The methodol-

ogy behind the shear simulations is presented in detail in our

previous work.25 In brief, we apply a sinusoidally-varying

shear strain, cxy ¼ co sin 2pftð Þ at a shear frequency, f by tilt-

ing a face of the simulation cell with a shear amplitude, co.

We ensure that co is well below the elastic limit to remain in

the linear viscoelasticity regime (see Sec. III C for further

details). The corresponding virial stress component (sxy) is

computed and fitted to a sinusoidal profile at the same fre-

quency as that of the applied strain, but with a phase shift, d.

We then determine the frequency-dependent storage (G0) and

loss moduli (G00) constituting the complex shear modulus,

G� ¼ G cos dð Þ þ iG sin dð Þ; where G ¼ sxy;max=cxy;max, G0

¼ G cos dð Þ, and G00 ¼ G sin dð Þ.
Our typical simulation protocol consists of oscillatory

shear over 5 cycles under the constant volume (NVE) condi-

tion to compute the averaged loss modulus, G00 ¼ G sin dð Þ.
The temperature at the start of shear simulation is typically

fixed at about 35% of the glass transition temperature (Tg). A

consequence of the shear process is dissipation of heat that

leads to an increase in temperature; in our simulations, we
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observe only a modest temperature rise, to the extent of a

few percent for an extended range of shear frequencies. As

we shall show later, in a narrow region of frequencies in the

high-frequency regime (of the order of a few THz), a pro-

nounced peak in damping is observed, that could lead to a

temperature increase by �25% in some glasses. However,

we note that this is still well below the Tg and hence, possible

effects on softening effects due to shear are minimal. Moduli

data are also computed in the presence of a Nose–Hoover

thermostat65,66 (i.e., in the NVT ensemble), over a larger

number of shear cycles (300 cycles) for comparison. We also

consider cases where we characterize damping for a constant

amount of time as opposed to constant number of cycles, at

different frequencies.

We are primarily interested in the dependence of loss

modulus, (G00) on shear frequency (“frequency-sweep” simu-

lations) and use loss modulus synonymously with damping

in the rest of the paper. The shear frequency is varied over 5

decades (ranging from 10 s of MHz to 10 s of THz) where

we uncover disparate mechanisms for damping at high and

low frequencies. Figure 1 shows sample oscillatory shear

deformation data (shear strain, cxy and shear stress, sxy) aver-

aged over 5 cycles of shear for the Cu-Zr MG system at two

shear frequencies (f¼ 0.02 THz and f¼ 2 THz), exhibiting

markedly different d and G00. Temperature at the start of

shear deformation was 300 K. Atomic snapshots at shear

strains corresponding to zero, maximum, and minimum shear

strains are shown as insets (shear strains for deformed cases

are exaggerated for clarity).

B. Model structures

We study viscoelastic damping in five model glasses,

namely, (a) Cu-Zr MG,67 (b) Dzugutov glass,68 (c) amor-

phous silicon (a-Si),69 (d) Wahnstr€om glass,70 and (e) amor-

phous silica.71 All the glasses have been studied extensively

in literature and have been used as models for understanding

structure-property relations in glasses and studying mechani-

cal properties.14,58,72–74 We generate the starting glass struc-

tures by quenching the melt under zero external pressure

using the Nose-Hoover barostat.75–78 For each structure, we

allow at least 100 ps for equilibration at the molten state and

then quench the melt with a quench rate Q. The values of Q
usually attainable in computer simulations are orders of mag-

nitude larger than in experiment and are typically in the

range of 1010 to 1014 K/ps.67,79–82 For the MG system, which

forms the baseline for an extensive study on various factors

affecting the damping characteristics, we additionally

employ various quench rates to study the effect of quench

rate on damping as described in Secs. III A and III B.

For each glass, the choice of force-field describing the

interaction energy, the time-step, the quench rate, the Tg, the

system size, and a few mechanical properties relevant for

characterizing damping are listed in Table I. Tg was esti-

mated from the temperature at which a change in the slope

of the volume-temperature curve is observed during quench

from a high temperature (liquid) to the shear temperature, at

zero external pressure, and with the quench rate Q indicated.

We use periodic boundary conditions along all three axes to

FIG. 1. Typical stress-strain response

for model Cu-Zr metallic glass at (a)

f¼ 0.02 THz, exhibiting a low phase

difference and low loss, and (b)

f¼ 2 THz, showing a large phase dif-

ference, and correspondingly, large

loss modulus. The peak shear modulus,

G is also noted. System temperature.

TABLE I. Simulation details and material properties for the five glass models used in this study.

Model/system Cu-Zr MG Dzugutova a-Si Wahnstr€omb Silica

Potential EAM67 Dzugutov68 Tersoff69 LJ70 BKS,71 with Wolf summation112

(electrostatics)

Time step (fs) 2 10.8 0.5 0.46 1.6

Tg (K) 815 418 1100 1000 2430

Quench rate (Q, K/s) 8.5� 1011 1.83� 1011 3� 1013 8.26� 1012 9.8� 1012

Deformation temperature (K) 300 174 540 274 900

Shear modulus (G, GPa) 18.38 3.34 34.1 20.13 35.3

Elastic limit (%) 4.9 5.9 12.9 6.56 14.2

Applied strain (oscillatory shear) (%) 1.5 1.81 3.95 1.99 4.36

System size (# atoms) 16 384 27 000 27 000 32 000 24 000

aFor the Dzugutov glass, the fundamental length and time scale correspond to r¼ 3.4 Å and to¼ 2.16 ps113 and we set the energy parameter e¼ 0.1 eV to scale

to physically relevant scales.
bFor the Wahnstr€om glass, these constants correspond to r22¼ 2.7 Å, to¼ 0.46 ps, and e22¼ 0.16 eV that correspond to a model 50–50 Ni-Nb metallic

glass.61,114

145103-3 Ranganathan, Shi, and Keblinski J. Appl. Phys. 122, 145103 (2017)



simulate bulk properties. The final structures are metastable

glasses characterized by pair correlation functions consistent

with literature. All simulations were performed with the

LAMMPS simulation package.83

III. DAMPING IN MG

In this section, we focus on viscoelastic damping in the

equimolar Cu-Zr MG system, with an emphasis on under-

standing the key factors that affect damping. These include

the effect of quench rate used in generating the glass, the

interplay between quench rate and dependence of damping

on the number of shear cycles, the effect of shear amplitude

and finally, the shear temperature. For each case, we perform

“frequency-sweep” oscillatory shear simulations over six

decades in frequency.

A. Frequency-dependent loss moduli

Frequency-sweep simulations to study the frequency

dependence of loss moduli (G00) were carried out for MG

quenched at multiple quench rates. Figure 2 shows the varia-

tion of G00 with frequency at T¼ 300 K. We observe a char-

acteristic peak in damping in the high-frequency regime (of

the order of a few THz), similar to the observation in model

crystalline Lennard-Jones composites.25 However, the pri-

mary mechanism for damping differs – anharmonic coupling

between phonons was observed to cause damping in the THz

regime for the crystalline materials, whereas, as we shall dis-

cuss later (Secs. IV A and V), the origin of this peak in glasses

lies in the coupling between the harmonic vibrational modes

driven by the external, non-equilibrium oscillatory shear

deformation. Interestingly, we observe that the peak ampli-

tude does not depend on the quench rate, while the intermedi-

ate and low-frequency regimes show a strong quench rate

dependence. This clearly suggests that structural differences

arising from differences in quench rate do not affect the high-

frequency damping in the THz regime.

With decreasing frequency, damping decreases initially,

following an approximate power-law scaling with frequency

(see Sec. IV C for a detailed discussion), followed by nearly

frequency-independent damping. However, the extent of

damping in the intermediate and low frequencies (extending

down to 50 MHz) shows a strong dependence on quench rate

– higher quench rate exhibits larger damping (seen more

clearly in inset of Fig. 2). The persistent damping in the MG

system, combined with the dependence on quench rate

strongly indicates that larger quench rates lead to more meta-

stable glasses with shallower energy minima, consequences of

which are greater structural relaxation and enhanced damping.

B. Dependence of damping on the number of shear
cycles

In our oscillatory shear simulations, a primary concern is

the variation of calculated loss moduli with the number of

shear cycles. This is particularly of interest for glasses due to

their metastability. It is expected that atomic rearrangements

with multiple cycles of shear could result in damping that

could potentially depend on the number of shear cycles, Ncycles.

We ideally desire a structure that does not exhibit significant

cycle-dependent damping, in order to keep our simulation

times tractable, especially at low frequencies. To examine this

effect, we study the dependence of loss modulus on Ncycles for

the four quench rates described in Sec. III A.

Shown in Fig. 3 are the results for damping at two fre-

quencies, f¼ 0.5 THz and 0.5 GHz, over multiple shear

cycles. We perform these simulations at a constant tempera-

ture (NVT) of T¼ 300 K to prevent abnormal structural rear-

rangements due to temperature rise. We observe that the

fastest quench rate (Q¼ 3.4 K/ps), being the most metastable,

results in damping that varies strongly with Ncycles, especially

in the initial stages. For glasses quenched with Q¼ 0.85 K/ps

and lower, we observe fairly cycle-independent damping. We

note that such cycle-independent damping is also exhibited at

other frequencies and we just show two frequencies here for

illustrative purposes. For all our further analyses, we use the

MG sample prepared with a quenching rate Q of 0.85 K/ps.

C. Effect of shear amplitude

Under oscillatory shear deformation, the extent of shear

amplitude determines the nature of viscoelastic response in

the material. Typical viscoelastic materials exhibit a “linear”

viscoelasticity up to certain amplitude, beyond which the

response becomes “non-linear.” The linearity in this context

refers to the dynamical shear modulus (either G0 or G00) being

invariant with respect to the shear amplitude. This is a rou-

tine analysis in the field of dynamical shear experiments,

especially in the field of soft matter such as polymer compo-

sites28 where, the strain amplitude determines whether the

shear falls under the so-called Small Amplitude Oscillatory

Shear (SAOS) or Large Amplitude Oscillatory Shear

(LAOS) regime. SAOS corresponds to a linear viscoelastic

response while LAOS gives rise to non-linearity.28

In our simulations, we check for linearity in viscoelastic

response by monitoring the dependence of G00 on the shear

amplitude. Very low strain amplitudes result in a poor signal to

FIG. 2. Frequency-sweep simulations depicting the variation of loss modu-

lus with shear frequency for the Cu-Zr MG system. Responses for four dif-

ferent quench rates are shown. The characteristic peak in the high-frequency

regime overlaps for all quench rates. Low-frequency damping is affected by

the quench rate, with larger quench rates resulting in larger damping. The

inset shows the portion of the low-frequency regime magnified.
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noise ratio for the estimation of G00, especially at low frequen-

cies. Figure 4 shows the variation of G00 with strain amplitude

for four frequencies separated by an order of magnitude from

each other. Simulations are performed at 300 K under NVE

conditions. As seen from the figure, non-linearity in the

response begins to set in at shear strains, cxy � 0.04, which is

also close to the elastic limit for this system (refer to Table I).

We thus choose a value of cxy¼ 0.015 (or 1.5%) in all our

shear simulations in the MG system to ensure a good signal-

to-noise ratio and to simultaneously operate within the linear

viscoelastic regime.

D. Effect of shear temperature

The predominant role played by temperature in visco-

elastic response is the softening of the material, leading to

more viscous character. We quantify this effect via
frequency-sweep simulations at various temperatures. Figure

5 shows the variation of loss modulus with frequency for

temperatures ranging from 30 K to 800 K. We note that the

Tg for the glass is �815 K. We observe that the high-

frequency peak is almost invariant with respect to

temperature. This is not surprising since this frequency

regime corresponds to frequencies in the range of thermal

vibrations, where the damping is harmonic, which is temper-

ature invariant.39–42 The softening at higher temperatures

lowers the high-frequency modulus marginally.

In the lower frequency regime, however, we observe a

marked difference in damping – the softening effect is sufficient

to overwhelm the driving frequency and we see significant

damping at higher temperatures. At 800 K (very close to the Tg),

we observe that at the lowest frequency (f¼ 5� 10�4THz), the

loss modulus begins to drop with frequency; here, although the

phase shift increases marginally with lowering frequency, we

observe that shear stress drops significantly (by �60%) due to

enhanced softening at this low frequency.

IV. COMMONALITIES IN DAMPING MECHANISMS
IN GLASSES

A. Frequency-dependent damping

The frequency-dependent damping characteristics in the

MG system, namely, the high-frequency peak (in the THz

regime) and persistent damping in the low-frequency regime

beckons the following question—“are the characteristics of

FIG. 3. Effect of aging on the computed loss modulus for glasses quenched at various rates. Aging in glass leads to estimated properties that are dependent on

the number of shear cycles; this is effect is probed by varying the number of shear cycles (Ncycles) for each quench rate. Shown in (a) and (b) are data for two

widely different shear frequencies (f¼ 0.5 THz and f¼ 0.5 GHz, respectively). Simulations were performed under NVT conditions at a temperature of 300 K.

The quench rate used for the bulk of the analysis pertaining to the MG, namely Q¼ 0.85 K/ps shows fairly cycle-independent damping.

FIG. 4. Effect of shear strain amplitude on viscoelastic response in MG.

Loss modulus is estimated for four different shear frequencies spanning four

orders of magnitude. Significant non-linearity in the response is observed at

strain amplitudes, cxy larger than about 0.04 (or 4%).

FIG. 5. Frequency-sweep simulations to study the effect of shear tempera-

ture on damping in MG. The maximum temperature (800 K) is just below

the Tg for the MG, which is �815 K.
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viscoelastic damping in glasses more universal in nature and

can be understood mechanistically for a wide variety of inor-

ganic glasses?.” With this goal in mind, we extend our work to

study damping in four other glasses—Dzugutov glass, amor-

phous silicon (a-Si), the Wahnstr€om glass, and amorphous sil-

ica. We perform oscillatory shear deformation simulations at

frequencies similar to the case of the MG system, to look for

typical characteristics in the frequency-dependent damping.

Shown in Table I is the list of simulation details, the poten-

tial used for describing interactions, and various system proper-

ties considered for this work, for all the glass models. We note

that we consider both unary (the Dzugutov glass and a-Si) and

binary glasses (Wahnstr€om and amorphous silica), in addition to

the MG glass discussed so far, which forms the baseline for our

comparison of damping characteristics. The two most important

factors to be considered while comparing the damping properties

between various glasses are the elastic limit and the glass transi-

tion temperature (Tg). The former affects the linearity in visco-

elastic response (as discussed in Sec. III C) and the latter

determines the relative scaling between the temperature at which

the material is deformed, and Tg, where significant softening

occurs (see Sec. III D). Thus, to maintain comparative shear con-

ditions across all glasses, we set the shear strain amplitude and

the deformation temperature for the MG system as the base-

line, and scale the strain amplitude and deformation tempera-

ture of the remaining four glasses based on their respective

elastic limits and Tg. The scaling is such that a common shear

strain amplitude (normalized by the elastic strain limit), and a

common deformation temperature (normalized by the glass

transition temperature) are used for all the glasses. These val-

ues are also given in Table I.

Figure 6 shows the comprehensive damping data from

frequency-sweep simulations for all the five glasses. Data

plotted in red triangles correspond to data from five cycles of

shear without a thermostat (i.e., under NVE conditions), and

those plotted in blue triangles are from 300 cycles of shear

in the high-frequency regime, in the presence of a Nose-

Hoover thermostat. The latter case is to check for stationarity

(i.e., invariance with respect to number of shear cycles) in

the stress-strain data. We observe only negligible differences

between the moduli computed for shear with and without a

thermostat. Moreover, the stress-strain profiles are stationary,

as observed from the Lissajous plots (shown in Fig. 7) for all

five glasses at the peak damping frequency, over 300 cycles

of shear. In addition, Fig. 6 also shows oscillatory shear

results for a fixed amount of time (as opposed to fixed number

of cycles), shown by green circle markers. Only minor differ-

ences were observed for damping for the two cases (fixed

time versus fixed number of cycles). We note that the fixed

time simulations (data shown by green circle markers) were

run for �50 ns that corresponds to 5 cycles of shear at the

lowest frequency, and 5000 cycles at the highest frequency.

Striking commonalities in the damping characteristics are

observed according to Fig. 6—first, in the high-frequency

regime (ranging from �0.1 THz to �10 s of THz), all glasses

show a pronounced peak in damping. With decreasing fre-

quency starting from the peak, G00 decreases as an approximate

power law (as shown later in Fig. 10) over an intermediate fre-

quency window for all glasses. Lastly, with further reduction

in frequency, persistent (even weakly increasing in some cases)

damping is observed in all glasses, extending down to the

MHz regime. This is true irrespective of whether shear was

performed over a fixed number of cycles, or for a fixed amount

of time. The mechanisms behind these damping characteristics

are discussed in the following sections (Sec. IV B–IV D).

B. High-frequency damping

In our previous work in damping in crystalline compo-

sites, we showed that enhanced damping at frequencies in

FIG. 6. Frequency-sweep simulations for the five glass structures considered

in this work. For each glass, we show the variation of loss modulus as a

function of shear frequency. All glasses show a characteristic peak in the

high-frequency regime, and a nearly-invariant, finite damping in the low-

frequency regime (insets for a-Si and silica show the magnified portion of

the low-frequency regime). Data shown in red (�) correspond to 5 cycles of

shear under NVE, those in blue (�) correspond to 300 cycles under NVT,

and green symbols (�) correspond to moduli computed during shear for a

constant amount of time as opposed to the constant number of cycles.
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the range of natural vibrational frequencies of the material is

a direct consequence of large anharmonicity in the coupling

between vibrational modes (phonons).25 The predominant

vibrational modes in glasses, denoted as “diffusons,” lack a

well-defined wave vector and polarization37 as opposed to

propagating, wavy, phonons in crystalline structures. An

extensive body of work in dissipation in disordered solids

points to the harmonic nature of damping,39,40,42 where the

vibrational eigenstates act as a system of act as damped har-

monic oscillators.42,84

First, to check for correlation between the peak frequency

for each glass (as obtained in Fig. 6) and the corresponding

vibrational frequencies, we compute the vibrational density of

states (DOS), g(f), from the Fourier transform of the velocity

autocorrelation function.85,86 Glasses show an excess in vibra-

tional density of states (referred to as the Boson peak) in com-

parison to the Debye prediction.87 The Boson peak is readily

discerned as the peak in the reduced density of states, [g(f)/f2]

when plotted as a function of frequency. It is of immediate

relevance to compare both the profiles of DOS, and the posi-

tion of the Boson peak, with the frequency-dependence of

damping. In Fig. 8, the loss moduli from Fig. 6 are plotted

along with the DOS for all five glasses, with both sets of data

normalized by their maximum for easy comparison of the

frequency-dependence. Insets to the figure show the reduced

density of states for each glass. Excess in the reduced DOS

manifests as either as a broad peak or a bunch of peaks, with

an additional divergent peak in the limit of zero frequency

(the so-called quasi-elastic peak for frequencies below the

range of interatomic potential88). It is immediately apparent

that the loss moduli for glasses follow approximately the

DOS (for network glasses, a-Si and silica, there are apparent

differences in the profiles for frequency dependence of loss

modulus and DOS that require a more detailed investigation).

Additionally, an important observation is that the peak damp-

ing occurs at frequencies much larger than the Boson peak

(typically an order of magnitude larger) for all glasses, consis-

tent with a previous study on damping in a Lennard Jones

glass.89

Another way to represent the relation between the peak

damping frequency and the DOS is to look for correlations

between the two. We plot the peak damping frequency as

function of the weight-averaged vibrational frequency from

the vibrational density of states (DOS), di in Fig. 9. The

weight-averaged frequency was computed as fav ¼
P

fi:di=P
di where, fi is the DOS frequency. As seen from the fig-

ure, there exists a strong correlation between the two, signi-

fying that damping in the THz regime essentially stems from

the direct excitation of vibrational modes by the driving fre-

quency. A detailed analysis of the excitation and discussion

on the harmonic damping mechanism is presented in Sec. V.

C. Damping in intermediate frequency—power-law
scaling

At frequencies below the peak damping frequency, we

observe that a distinct power-law scaling between the loss

modulus and frequency exists. This can be observed clearly

in Fig. 10, where loss moduli from Fig. 6 are plotted with a

FIG. 7. Lissajous plots for stress-strain during oscillatory shear at the highest

damping frequency (as shown in Fig. 6) for oscillatory shear deformation of

all the glass models considered. The solid black line is the averaged data

over 300 cycles. Data represented by colored markers correspond to stress-

strain values from different cycle numbers, N (red (�): N¼ 5; green (�):

circle: N¼ 50; blue (�): N¼ 250).
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log-log scale. The power-law exponents are noted for each

glass. The scaling holds for intermediate frequencies for all

glasses, down to �50 GHz for the Cu-Zr MG, Dzugutov, and

Wahnstr€om glasses, and till �100 GHz and �1 THz for silica

and a-Si. First, this scaling is consistent with a large body of

work on sound attenuation90–93 and propagation of shock

waves in viscoelastic materials94 and damping in nanome-

chanical resonators.33 They all exhibit a power-law scaling

with respect to frequency, with a power law exponent rang-

ing from 0 to 2.

Second, we note that the scaling for Cu-Zr MG, Dzugutov,

and Wahnstr€om glasses (which can be classified as “atomic” or

“non-network” glasses) are all close to 1, and have a large

goodness of fit. On the other hand, silica and a-Si (which are

“network” glasses), show noticeable shoulders in the power-

law fits, with a-Si showing a much larger exponent. We believe

the nature of the power-law scaling in this frequency spectrum

is inherently tied to the vibrational frequencies of the glass. As

seen from the vibrational density of states plotted in Fig. 8, the

noticeable peak positions for the acoustic and optical vibra-

tional modes for silica and a-Si, approximately coincide with

the shoulders observed in the loss moduli.

D. Low-frequency damping and structural relaxation

At frequencies below the power-law scaling regime, all

glasses exhibit persistent damping, down to �50 MHz (as

seen in Fig. 6). With a view to explain this phenomenon, we

take a cue from the inherent metastability of glasses that

results in the formation of local deformation clusters, known

as “soft spots,” under loading. These soft spots are typically

associated with shear transformation zones and eventual

plastic deformation,62,64,95,96 and could play a role in damp-

ing during the oscillatory shear deformation. Of particular

importance would be the role of shear frequency employed

on the evolution of such clusters. This mechanism is sup-

pressed at frequencies corresponding to the high-frequency

peak (in the THz range of vibrational frequencies) and leads

to the persistent damping in the low-frequency regime. We

note that in the low-frequency regime, averaging over a

larger number of cycles was precluded by the high computa-

tional expense (see Fig. 6); however, loss modulus is

expected to have acceptable stationarity, owing to the rela-

tively slow rate of evolution of soft spots.

Here, we study the evolution of such soft spots or clusters

as a function of shear frequency, for all the glasses and the

FIG. 9. Correlation between the peak position in the frequency-dependent

loss modulus as obtained in Fig. 6 and the average frequency obtained from

vibrational density of states (DOS) for each glass.

FIG. 8. Comparative plots of loss moduli (green squares), vibrational den-

sity of states (DOS) and reduced density of states (insets) for all five glasses.

Loss moduli data are the same as those reported in Fig. 6.
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results are shown in Fig. 11. These simulations are performed

under constant temperature (NVT) conditions, where the total

time for shear deformation is fixed (as presented in Fig. 6).

The total simulation time is fixed at 50 ns. The criterion for an

atom to contribute to a cluster is that it should have a dis-

placement at least equal to the shear amplitude and should

have at least one other displaced neighbor within a cutoff dis-

tance equal to the first shell of the nearest neighbors. This cut-

off corresponds to the first minimum in the pair correlation

function, g(r). We observed that a-Si and silica exhibited neg-

ligible cluster formation with this criterion, hence, the dis-

placement amplitude was reduced to half the shear amplitude

for these two cases.

Figure 11 shows the formation of both average cluster

size and percentage of atoms that contribute to the clusters (the

irreversibly deformed volume). For all glasses, we observe a

decrease in cluster sizes for increasing frequency. Similarly,

the volume of cluster atoms (panel b) shows a decreasing trend

with increasing frequency. One exception here is the a-Si glass,

which shows an increase in cluster volume (at 10 THz), albeit

consisting of smaller cluster size compared to lower frequen-

cies. This frequency-dependent cluster formation is, in fact,

further accentuated for the case of constant number of shear

cycles (as depicted in Fig. 6). We argue that the larger amount

of time available for nucleation and growth of clusters at lower

frequencies leads to a nearly-constant or even slightly increas-

ing damping with decreasing frequency. A similar phenome-

non for “viscous flow units” was observed by Wang et al.97

during cyclic deformation of metallic glasses, albeit at high

temperatures required for their activation, and by Priezjev98,99

who demonstrated evolution of non-affine localized deforma-

tion during shear of a model binary Lennard–Jones glass.

FIG. 11. Characterization of clusters

(“soft spots”) formed during constant-

time oscillatory shear simulations for

various glasses, as a function of shear

frequency. The total simulation time at

each frequency, for each glass is 50 ns.

(a) Average cluster sizes at the end of

50 ns of oscillatory shear. (b) The total

volume fraction of irreversibly

deformed clusters at the end of shear.

The general trend of increasing cluster

size and volume with decreasing fre-

quency is evident.

FIG. 10. Loss moduli data from Fig. 6 plotted in the log-log scale to demon-

strate power-law variation near the high-frequency peak. Power-law expo-

nents are indicated.
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This low-frequency damping mechanism is a common

feature in all glasses, but the extent of damping depends on

the ease of formation of clusters, which in turn depends on

the intermolecular forces at the atomic scale. We thus show

that oscillatory shear deformation at low frequencies serve as

a powerful probe for quantifying the ease of local atomic

motion and the associated structural relaxation in glasses. On

the other hand, at high frequencies approaching the THz

regime (where cluster formation is suppressed), damping

occurs via coupling between the harmonic vibrational eigen-

states of the glass.

V. DISCUSSION

The harmonic nature of damping in disordered solids in

the THz frequency, i.e., at frequencies corresponding to vibra-

tional frequencies is well-established.41,42,100 In glasses, the

Ioffe–Regel (IR) limit101 defines the frequency at which the

phonon mean free path becomes comparable with the wave-

length. Above the IR limit, vibrational modes can no longer be

defined with a wave-like character. Attenuation and damping

in glasses, both below and above the IR limit have been shown

to be harmonic in nature. Below this limit, elastic heterogene-

ities, i.e., heterogeneities in elastic moduli due to the inherent

structural disorder act as scattering centers for propagation of

vibrations, leading to harmonic Rayleigh scattering.102

Above the IR limit, and within the range of vibrational

frequencies, Damart et al.42 showed that damping arises from

coupling between vibrational eigenmodes that act as damped

harmonic oscillators. For a model silica glass, they showed

that application of an oscillatory isostatic deformation gives

rise to non-affine relaxations that in turn couple with the

vibrational states. An alternate picture for harmonic energy

dissipation in disordered, harmonic media can be found in the

theory of thermal conductivity in disordered solids by Allen

and Feldman.103 They showed that, using a Kubo–Greenwood

formalism, heat is transported by decoupled harmonic oscilla-

tors which are, in fact coupled by the temperature gradient.

The delocalized vibrational eigenstates, resulting from super-

position of the modes lead to non-zero off-diagonal elements

of the density matrix. This translates to non-zero off-diagonal

elements in the heat current operator, thus conducting heat.

Thus, under non-equilibrium conditions, dissipation occurs

due to direct coupling between harmonic modes in the pres-

ence of the non-equilibrium field (in this case, the oscillatory

shear deformation).

A direct measure of the coupling between vibrational

modes and the frequency of the input shear deformation is

readily computed by measuring the temperature of each

vibrational mode, T(f ) during a non-equilibrium process

(oscillatory shear in this case) according to Eq. (1), following

the work of Shenogina et al.,104

Tðf Þ ¼ TEQ

ðfþDf=2

f�Df=2

CNEðf 0Þdf 0

ðfþDf=2

f�Df=2

CEQðf 0Þdf 0
: (1)

Here, CNE and CEQ are the velocity autocorrelation func-

tions computed during the non-equilibrium (NE) shear process,

and under equilibrium (EQ) respectively. TEQ is the system

temperature in the absence of shear, i.e., under equilibrium.

Numerical integration is performed over frequency windows

of length Df , centered at frequency f . Shown in Fig. 12 are the

temperatures of vibrational modes calculated for Cu-Zr MG

(panels a and b) and silica (panels c and d), during oscillatory

shear at two frequencies close to the THz regime, and, which

fall within the vibrational density of states for each glass. The

equilibrium simulation was performed at 350 K (TEQ¼ 350 K),

and the corresponding shear simulations were performed over

simulation times corresponding to a temperature rise from

300 K to 400 K, such that the average temperature equals

TEQ. The only exception was for the silica simulation at

f ¼ 2.27 THz, where rapid and strong damping results in an

average temperature �580 K. Thus, the rise in temperature is

modest in comparison to Tg. As can be clearly seen from the

figure, the modes closest to the driving shear frequency (indi-

cated by solid black lines) are selectively excited for all cases.

This suggests that the energy pumped in via the plane wave-

like shear deformation directly excites a set of vibrational

modes whose frequencies overlap with the driving frequency,

which subsequently dissipate energy harmonically. A signature

for harmonic damping is its temperature-independence widely

FIG. 12. Temperature of vibrational

modes during shear at two frequencies,

(a) f¼ 0.32 THz and (b) f¼ 0.85 THz

for the Cu-Zr MG system, and at (c)

f¼ 0.85 THz and (d) f¼ 2.27 THz for

silica. The driving frequency is indi-

cated by a solid line for each case.

Temperatures of modes were calcu-

lated according to Eq. (1).
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reported in literature,39–42 which is also observed for the Cu-Zr

MG system in this work (see Fig. 5), for silica (not shown

here), and presumably for the other glasses considered in this

work as well.

The above picture of excitation of vibrational frequen-

cies holds only in the high-frequency regime; at frequencies

far below the vibrational frequencies, the time scale associ-

ated with the shear period is much larger than the time for

heat diffusion, and the predominant damping mechanism

transitions to local plastic deformation (soft spots) as out-

lined in Sec. IV D. A large body of work in literature has

dealt with studying the nature of local plastic events and

shear transformations in amorphous solids under constant

rate shear deformation;105–107 it would be interesting to com-

pare statistics of such cluster formation with the oscillatory

shear case. Priezjev98,99 studied the effect of periodic shear

deformation on evolution of atomic rearrangements, and

compared them with a no-shear, quiescent case. He showed

that displacements are predominantly non-affine, the magni-

tude of which increases with strain amplitude. Interestingly,

non-affine deformations were observed even for the quies-

cent case. In this context, we show that alternatively, lower-

ing of shear frequency also leads to an increase in the cluster

size (as seen in Fig. 11).

It is worthwhile to discuss our results for local atomic

rearrangements (soft spots) in the context of a and b relaxa-

tions in glass. Under oscillatory shear, these relaxations are

characterized by the variation of loss modulus as a function

of temperature, or equivalently, as a function of frequency as

considered in this work. a relaxation is associated with a

peak in loss modulus close to Tg, while b relaxation is

characterized by finite loss modulus at sub-Tg temperatures

(sometimes down to room temperature).108–110 Alternatively,

a and b relaxations can be associated with low (< kHZ

range) and high frequency (Hz to GHz regime) portions of

the damping spectrum, depending on the properties of the

glass, and the temperature.54 Since we study damping of

glasses at temperature close to 0.3 Tg, and at frequencies

spanning from MHz to THz, we rule out the role of a relaxa-

tions completely. However, one cannot rule out the role of b
relaxations in our results, considering the temperature at

which the viscoelastic response is studied. Cohen et al.110

used molecular dynamics to study the cooperative nature of

beta relaxations in a model Lennard Jones glass under oscilla-

tory shear, by pinning a small fraction of particles to the coor-

dinate frame moving with the affine transformation describing

the overall shear. Extending such a protocol to our glass mod-

els combined with novel experimental advancements may

possibly reveal the role of beta relaxations in this frequency

regime (�MHz). Broadband dielectric spectroscopic studies

on structural glasses such as a-Si and silica may reveal addi-

tional insights on the frequency-dependence. Moreover, relax-

ation mechanisms in glasses, along with the associated atomic

rearrangements depend strongly on the strain amplitude of

the oscillatory shear.111 Indeed, with respect to relaxation,

the complex interplay between temperature, frequency, and

strain amplitude for characterization of loss moduli may

reveal further commonalities, and requires further detailed

consideration.

Finally, an important control parameter during the shear

simulations is the thermostat, and its role in the dissipation

mechanism. We note that the role of thermostat in the high-

frequency regime is negligible, as seen in Fig. 6 for shear in

the presence and absence of a thermostat. Damart et al.42

reported a qualitatively similar trend in the high-frequency

damping for silica. However, at frequencies below the range

of vibrational frequencies, they observed that the quality fac-

tor (or equivalently, the loss modulus) shows a direct scaling

with the damping constant of the thermostat. This suggests

that moduli in the intermediate and low frequencies reported

here could be affected by the choice of the thermostat.

However, qualitatively, damping in low frequencies arising

via the local deformation of atomic clusters is expected to be

present irrespective of the choice of the thermostat.

VI. SUMMARY AND CONCLUSIONS

Using non-equilibrium molecular dynamics oscillatory

shear simulations, we have studied viscoelastic damping

extensively in a model Cu-Zr metallic glass (MG), and show

a striking commonality in damping characteristics for various

glasses. The two important characteristics in the dependence

of damping (as characterized by the loss modulus, G00) on

shear frequency are: (a) the presence of a well-defined peak in

the high-frequency (THz) regime and (b) persistent, nearly-

constant damping in the intermediate and low frequency

regime. We show that the quench rate plays an important role

in damping, especially at low frequencies—larger quench

rates (glass at shallower energy minima) lead to a greater

degree of local deformation, leading to larger damping.

Closely associated with this is the time-dependent loss modu-

lus for a glass with a large quench rate. The two other key fac-

tors are shear amplitude and shear temperature—shear

amplitudes near and beyond the elastic limit exhibit non-

linear viscoelastic response and larger shear temperatures

result in larger loss moduli in the low-frequency limit.

We show a clear correlation for the peak frequency (in

the THz range) in damping response with the average vibra-

tional frequency of glass. Vibrational modes close to the

driving frequency are selectively excited, which then result

in dissipation of energy harmonically. At intermediate and

low frequencies (reaching down to �50 MHz), we show that

persistent damping in all glasses is a result of long time-scale

local, irreversible deformation. From this study, we demon-

strate that oscillatory shear deformation serves as a powerful

probe for furthering mechanistic understanding of damping

in the MHz to THz regime, and particularly in glasses, to

quantify the degree of local atomic motion and associated

stress relaxation at low frequencies.
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