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We use non-equilibrium molecular dynamics oscillatory shear simulations to study frequency-
dependent viscoelastic damping spanning nearly six decades in frequency range (MHz to THz), in
a wide range of model glasses including binary glasses such as Cu-Zr metallic glass (MG),
Wahnstrom glass and amorphous silica, and unary glasses, namely, Dzugutov glass and amorphous
silicon. First, for the Cu-Zr MG, we elucidate the role of quench rate, number of shear cycles, shear
amplitude, and shear temperature on the damping characteristics. We observe striking commonali-
ties in damping characteristics for all glasses studied—(i) a peak in the loss modulus in the high-
frequency regime (~THz) and (ii) persistent damping in the low-frequency regime (extending
down to 10s of MHz). The high-frequency peak is seen to overlap with the range of natural vibra-
tional frequencies for each glass, and arises from coupling between the excited harmonic vibra-
tional modes. On the other hand, persistent damping at intermediate and low frequencies is shown
to be a result of long time-scale local, irreversible deformation. Published by AIP Publishing.

https://doi.org/10.1063/1.5006036

I. INTRODUCTION

The configurationally frozen liquid-like nature of glasses
plays an important role for a wide range of applications.
Glasses can be formed from both inorganic materials such as
oxides and metallic alloys, and organic entities such as poly-
mers. Furthermore, one can classify inorganic glasses based
on their structure, into either “network glasses” such as silica-
based glasses, or “non-network” glasses such as metallic
glasses. Oxide glasses, most notably, based on silica have
been used for a variety of applications spanning multiple mil-
lennia, primarily for decorative purposes. More recently,
silica-based glasses with additions such as sodium, boron,
lead, aluminum, calcium, etc. have been designed for electri-
cal, chemical, and optical properties.1 On the other hand,
glasses for structural applications really picked up with the
discovery of metallic glass (MG) by Duwez and co-workers”
and subsequent efforts in engineering processing techniques
and compositional studies.* Deformation mechanisms are
usually influenced by the interplay of temperature and strain-
rates, among other factors, and have been studied extensively
for glasses, in particular, for bulk metallic glasses.®” A cru-
cial aspect in this development has been the progress in the
study of structure-property relations in glasses,'®* under-
standing of which has led to glasses with exceptional mechan-
ical properties such as enhanced plasticity,”'>'® strength,'®!”
and fracture toughness.'®

Glasses are also candidate materials for applications in
mechanical damping. In this context, damping is time-
dependent (or inversely, frequency-dependent), and typically
involves structural relaxations due to inherent heterogene-
ities in glass (often termed as anelastic relaxation).!*2°
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Anelastic relaxation could also arise due to diffusion of spe-
cies such as hydrogen trapped within glass, and has been
used in tuning the damping properties of hydrogen-loaded
bulk metallic glasses.”’ > Anelastic relaxation can be
thought of as a special case of the broader time-dependent
viscoelastic damping (referred to alternatively as the internal
friction, denoted as O, the ratio of energy dissipated to
stored elastic energy over a cycle of deformation).?*

Viscoelastic damping has its origin in atomic-level inter-
actions and structural features within the material that result
in an out-of-sync relation between stress and strain under
cyclic deformation. These mechanisms are strongly dependent
on the applied shear frequency (or rate). Widely different
mechanisms are usually at play while contributing to damping
at different frequencies” %’ and have been extensively stud-
ied for polymeric systems.”® While several experimental stud-
ies have focused on characterization and mechanisms of
damping via dynamic mechanical analysis,”® " the frequency
range studied cannot exceed a few 100 Hz due to experimen-
tal limitations. A mechanistic understanding of viscoelastic
damping in inorganic glasses at frequency ranges extending
up to THz is currently lacking, which is the focus of this
work.

Structural relaxation in glasses under static conditions,
is known to be greatly influenced by the deformation rate,
especially at low frequencies, and over long time-scales.*”
Going up the frequency scale, devices such as micromechan-
ical and nanomechanical resonators require large quality fac-
tors (low damping),”> > operate up to GHz frequencies. The
upper end of the frequency spectrum (THz range) is relevant
for high-frequency damping properties in phononic intercon-
nects,38 and attenuation of sound.*®>’ In this regime, damp-
ing is a result of coupling between harmonic vibrational
modes.**?

Published by AIP Publishing.
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Experimentally, direct measurement of viscoelastic
damping is performed via the dynamical mechanical analy-
sis.*? In this technique, cyclic loading in the form of an oscil-
latory torque is applied to probe the stress-strain response to
determine the complex modulus. Forces are applied either
mechanically (routinely employed for studying soft matter®®
and sometimes for hard materials****) where typical fre-
quencies are limited to a ~100s of Hz, or via electromag-
netic forces*®*’ to attain larger frequencies (~10* Hz).

At even higher frequencies approaching vibrational fre-
quencies (in the THz range), characterizing mechanical
response via direct dynamical mechanical analysis becomes
experimentally unattainable. However, three common exper-
imental techniques that can be used to study mechanical
relaxation at high frequencies include (i) Inelastic X-ray
Scattering (IXS), (ii) Brillouin Light Scattering (BLS) that
both utilize photon-phonon scattering processes, and (iii)
broadband dielectric loss spectroscopy. IXS has been used
extensively to measure sound attenuation coefficients.*®
Using BLS, one can typically measure elastic constants
including shear modulus from phonon velocities and derive
the phonon damping parameter (which is proportional to the
acoustic attenuation) from the full width at half maximum of
the spectra.**~>! However, extending this to quantify dynamic
mechanical damping from these techniques is not straightfor-
ward. Dielectric spectroscopy, on the other hand can yield
valuable molecular level information in non-conducting mate-
rials including a wide variety of glass forming liquids.”*>*
Using this technique, relaxation processes such as o and f
relaxations have been studied extensively in many glasses.>>>°
The frequency-dependent real and imaginary components of
the dielectric permittivity, and consequently, the loss tangent,
are obtained by relaxation of charged entities over multiple
decades in the frequency range (from ~10 °Hz, up to THz
and beyond). This is achieved by using a combination of
techniques (such as direct measurement of capacitance and
time-domain techniques at frequencies up to kHz, frequency
response analysis for MHz, and quasi-optical spectrometers
for THz frequencies) to probe the broadband frequency spec-
trum.”* Though this technique has been very useful in under-
standing frequency-dependent relaxation in glasses, it requires
a combination of a sophisticated experimental setup, and can
only be employed for non-conducting materials. Besides,
mechanisms responsible for dielectric and viscoelastic losses
are often different.’’ In this context, molecular-level simula-
tions are extremely useful to study viscoelastic damping over
a wide range of shear frequencies, particularly in the high fre-
quency (GHz to THz) regime. Molecular dynamics deforma-
tion studies have been used extensively' to study mechanical
properties including tensile®™> and compressive deforma-
tion,60 indentation,61 fatigue,62 and plastic deformation under
shear.0*%*

We had previously demonstrated that oscillatory shear
based molecular dynamics simulations can be used to study
frequency-dependent viscoelastic damping in hard materials
such as crystalline composites comprising soft and stiff crys-
talline phases.””> We showed that a characteristic peak in
frequency-dependent damping arises in the THz regime from
phonon-phonon anharmonic coupling, and essentially decays
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to zero (i.e., behaves elastically) as frequency is lowered. In
this work, we present non-equilibrium (NE) oscillatory shear
molecular dynamics simulations to study mechanisms behind
frequency-dependent loss moduli (used synonymously with
viscoelastic damping or mechanical damping) in various
model glasses, over a wide range of frequencies (spanning
nearly six decades). Compared to the crystalline case, we
uncover novel damping mechanisms in glasses — at high
frequencies (~THz), a characteristic peak in damping is
observed. While for crystalline systems, the primary mecha-
nism for high-frequency damping was shown to be due to
anharmonic coupling between vibrational modes,> the pri-
mary damping mechanism in glasses is harmonic, with the
oscillatory shear exciting the vibrational eigen modes corre-
sponding to the driving frequency. At intermediate and lower
frequencies (~10s of MHz), persistent damping (albeit much
lower in magnitude compared to the THz range) results from
long time-scale, local irreversible deformation. We emphasize
here that the “low frequency” response probed in this work
(~MHz) is in the context of the frequency regime studied; it
is still orders of magnitude larger than the experimental
capacity (few 100 s of Hz).

The organization of the paper is as follows: the oscilla-
tory shear methodology to characterize damping and details
of model structures are presented in Sec. II. In Sec. III, we
present an extensive analysis of various factors that affect
damping in the Cu-Zr metallic glass, as an example system.
Section IV describes the commonalities in damping behavior
over a wide range of frequencies, for a range of glasses.
Section V contains a discussion on the mechanisms of damp-
ing, and conclusions are presented in Sec. VI.

Il. SIMULATION METHODOLOGY AND MODEL
STRUCTURES

A. Oscillatory shear deformation

We study viscoelastic damping in model glasses by the
application of non-equilibrium oscillatory shear deformation,
within the framework of molecular dynamics. The methodol-
ogy behind the shear simulations is presented in detail in our
previous work.”> In brief, we apply a sinusoidally-varying
shear strain, y,, = 7, sin(2nft) at a shear frequency, f by tilt-
ing a face of the simulation cell with a shear amplitude, 7,.
We ensure that y, is well below the elastic limit to remain in
the linear viscoelasticity regime (see Sec. III C for further
details). The corresponding virial stress component (t,,) is
computed and fitted to a sinusoidal profile at the same fre-
quency as that of the applied strain, but with a phase shift, .
We then determine the frequency-dependent storage (G') and
loss moduli (G”) constituting the complex shear modulus,
G* = Geos(d) +iGsin(d); where G = Ty mar/ 7y maxs G’
= Gcos(), and G” = Gsin(9).

Our typical simulation protocol consists of oscillatory
shear over 5 cycles under the constant volume (NVE) condi-
tion to compute the averaged loss modulus, G” = G sin(§).
The temperature at the start of shear simulation is typically
fixed at about 35% of the glass transition temperature (T,). A
consequence of the shear process is dissipation of heat that
leads to an increase in temperature; in our simulations, we
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observe only a modest temperature rise, to the extent of a
few percent for an extended range of shear frequencies. As
we shall show later, in a narrow region of frequencies in the
high-frequency regime (of the order of a few THz), a pro-
nounced peak in damping is observed, that could lead to a
temperature increase by ~25% in some glasses. However,
we note that this is still well below the T, and hence, possible
effects on softening effects due to shear are minimal. Moduli
data are also computed in the presence of a Nose—Hoover
thermostat®>-° (i.e., in the NVT ensemble), over a larger
number of shear cycles (300 cycles) for comparison. We also
consider cases where we characterize damping for a constant
amount of time as opposed to constant number of cycles, at
different frequencies.

We are primarily interested in the dependence of loss
modulus, (G”) on shear frequency (“frequency-sweep” simu-
lations) and use loss modulus synonymously with damping
in the rest of the paper. The shear frequency is varied over 5
decades (ranging from 10s of MHz to 10s of THz) where
we uncover disparate mechanisms for damping at high and
low frequencies. Figure 1 shows sample oscillatory shear
deformation data (shear strain, Vxy and shear stress, 7,,) aver-
aged over 5 cycles of shear for the Cu-Zr MG system at two
shear frequencies (f=0.02THz and f=2THz), exhibiting
markedly different 0 and G”. Temperature at the start of
shear deformation was 300K. Atomic snapshots at shear
strains corresponding to zero, maximum, and minimum shear
strains are shown as insets (shear strains for deformed cases
are exaggerated for clarity).

B. Model structures

We study viscoelastic damping in five model glasses,
namely, (a) Cu-Zr MG,*’ (b) Dzugutov glass,68 (c) amor-
phous silicon (a—Si),69 (d) Wahnstrom glass,70 and (e) amor-
phous silica.”" All the glasses have been studied extensively
in literature and have been used as models for understanding
structure-property relations in glasses and studying mechani-
cal properties.'*%7>77* We generate the starting glass struc-
tures by quenching the melt under zero external pressure
using the Nose-Hoover barostat.””~’® For each structure, we
allow at least 100 ps for equilibration at the molten state and
then quench the melt with a quench rate Q. The values of Q
usually attainable in computer simulations are orders of mag-
nitude larger than in experiment and are typically in the
range of 10'° to 10" K/ps.%”-"""? For the MG system, which
forms the baseline for an extensive study on various factors
affecting the damping characteristics, we additionally
employ various quench rates to study the effect of quench
rate on damping as described in Secs. III A and III B.

For each glass, the choice of force-field describing the
interaction energy, the time-step, the quench rate, the T, the
system size, and a few mechanical properties relevant for
characterizing damping are listed in Table 1. T, was esti-
mated from the temperature at which a change in the slope
of the volume-temperature curve is observed during quench
from a high temperature (liquid) to the shear temperature, at
zero external pressure, and with the quench rate Q indicated.
We use periodic boundary conditions along all three axes to

TABLE I. Simulation details and material properties for the five glass models used in this study.

Model/system Cu-Zr MG Dzugutov®
Potential EAM®’ Dzugutov®®
Time step (fs) 2 10.8

T, (K) 815 418
Quench rate (Q, K/s) 8.5x 10" 1.83 x 10!
Deformation temperature (K) 300 174
Shear modulus (G, GPa) 18.38 3.34
Elastic limit (%) 4.9 5.9
Applied strain (oscillatory shear) (%) 1.5 1.81
System size (# atoms) 16384 27000

a-Si Wahnstrom® Silica
Tersoff® Ly° BKS,”! with Wolf summation' '
(electrostatics)
0.5 0.46 1.6
1100 1000 2430
3x 10" 8.26 x 10"? 9.8 x 10'?
540 274 900
34.1 20.13 35.3
12.9 6.56 14.2
3.95 1.99 436
27000 32000 24000

“For the Dzugutov glass, the fundamental length and time scale correspond to ¢ =3.4 Aandr,=2.16 ps''? and we set the energy parameter £ = 0.1 eV to scale

to physically relevant scales.

“For the Wahnstrom glass, these constants correspond to g, =2.7 10%, t,=0.46 ps, and &, =0.16eV that correspond to a model 50-50 Ni-Nb metallic

glass 61,114
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simulate bulk properties. The final structures are metastable
glasses characterized by pair correlation functions consistent
with literature. All simulations were performed with the
LAMMPS simulation package.®

lll. DAMPING IN MG

In this section, we focus on viscoelastic damping in the
equimolar Cu-Zr MG system, with an emphasis on under-
standing the key factors that affect damping. These include
the effect of quench rate used in generating the glass, the
interplay between quench rate and dependence of damping
on the number of shear cycles, the effect of shear amplitude
and finally, the shear temperature. For each case, we perform
“frequency-sweep” oscillatory shear simulations over six
decades in frequency.

A. Frequency-dependent loss moduli

Frequency-sweep simulations to study the frequency
dependence of loss moduli (G”) were carried out for MG
quenched at multiple quench rates. Figure 2 shows the varia-
tion of G” with frequency at T=300K. We observe a char-
acteristic peak in damping in the high-frequency regime (of
the order of a few THz), similar to the observation in model
crystalline Lennard-Jones composites.”> However, the pri-
mary mechanism for damping differs — anharmonic coupling
between phonons was observed to cause damping in the THz
regime for the crystalline materials, whereas, as we shall dis-
cuss later (Secs. IV A and V), the origin of this peak in glasses
lies in the coupling between the harmonic vibrational modes
driven by the external, non-equilibrium oscillatory shear
deformation. Interestingly, we observe that the peak ampli-
tude does not depend on the quench rate, while the intermedi-
ate and low-frequency regimes show a strong quench rate
dependence. This clearly suggests that structural differences
arising from differences in quench rate do not affect the high-
frequency damping in the THz regime.

15 ; ;
I -@-3.40 Kips
% —-0.85 K/ps
=~ -8-0.21 K/ps
o®10f ~<+0.04 K/ps
@
=)
=]
°
2 5
[7)]
(2]
o
—

0 - -

10° 10* 102 102 107 10° 10!

Frequency (THz)

FIG. 2. Frequency-sweep simulations depicting the variation of loss modu-
lus with shear frequency for the Cu-Zr MG system. Responses for four dif-
ferent quench rates are shown. The characteristic peak in the high-frequency
regime overlaps for all quench rates. Low-frequency damping is affected by
the quench rate, with larger quench rates resulting in larger damping. The
inset shows the portion of the low-frequency regime magnified.
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With decreasing frequency, damping decreases initially,
following an approximate power-law scaling with frequency
(see Sec. IVC for a detailed discussion), followed by nearly
frequency-independent damping. However, the extent of
damping in the intermediate and low frequencies (extending
down to 50 MHz) shows a strong dependence on quench rate
— higher quench rate exhibits larger damping (seen more
clearly in inset of Fig. 2). The persistent damping in the MG
system, combined with the dependence on quench rate
strongly indicates that larger quench rates lead to more meta-
stable glasses with shallower energy minima, consequences of
which are greater structural relaxation and enhanced damping.

B. Dependence of damping on the number of shear
cycles

In our oscillatory shear simulations, a primary concern is
the variation of calculated loss moduli with the number of
shear cycles. This is particularly of interest for glasses due to
their metastability. It is expected that atomic rearrangements
with multiple cycles of shear could result in damping that
could potentially depend on the number of shear cycles, N.yces-
We ideally desire a structure that does not exhibit significant
cycle-dependent damping, in order to keep our simulation
times tractable, especially at low frequencies. To examine this
effect, we study the dependence of loss modulus on Ny for
the four quench rates described in Sec. III A.

Shown in Fig. 3 are the results for damping at two fre-
quencies, f=0.5THz and 0.5GHz, over multiple shear
cycles. We perform these simulations at a constant tempera-
ture (NVT) of T=300K to prevent abnormal structural rear-
rangements due to temperature rise. We observe that the
fastest quench rate (Q = 3.4 K/ps), being the most metastable,
results in damping that varies strongly with Ny, especially
in the initial stages. For glasses quenched with Q =0.85 K/ps
and lower, we observe fairly cycle-independent damping. We
note that such cycle-independent damping is also exhibited at
other frequencies and we just show two frequencies here for
illustrative purposes. For all our further analyses, we use the
MG sample prepared with a quenching rate Q of 0.85 K/ps.

C. Effect of shear amplitude

Under oscillatory shear deformation, the extent of shear
amplitude determines the nature of viscoelastic response in
the material. Typical viscoelastic materials exhibit a “linear”
viscoelasticity up to certain amplitude, beyond which the
response becomes “non-linear.” The linearity in this context
refers to the dynamical shear modulus (either G’ or G”) being
invariant with respect to the shear amplitude. This is a rou-
tine analysis in the field of dynamical shear experiments,
especially in the field of soft matter such as polymer compo-
sites?® where, the strain amplitude determines whether the
shear falls under the so-called Small Amplitude Oscillatory
Shear (SAOS) or Large Amplitude Oscillatory Shear
(LAOS) regime. SAOS corresponds to a linear viscoelastic
response while LAOS gives rise to non-linearity.*®

In our simulations, we check for linearity in viscoelastic
response by monitoring the dependence of G” on the shear
amplitude. Very low strain amplitudes result in a poor signal to
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FIG. 3. Effect of aging on the computed loss modulus for glasses quenched at various rates. Aging in glass leads to estimated properties that are dependent on
the number of shear cycles; this is effect is probed by varying the number of shear cycles (Ny.) for each quench rate. Shown in (a) and (b) are data for two
widely different shear frequencies (f=0.5 THz and f= 0.5 GHz, respectively). Simulations were performed under NVT conditions at a temperature of 300 K.
The quench rate used for the bulk of the analysis pertaining to the MG, namely Q = 0.85 K/ps shows fairly cycle-independent damping.

noise ratio for the estimation of G”, especially at low frequen-
cies. Figure 4 shows the variation of G” with strain amplitude
for four frequencies separated by an order of magnitude from
each other. Simulations are performed at 300 K under NVE
conditions. As seen from the figure, non-linearity in the
response begins to set in at shear strains, Ty = 0.04, which is
also close to the elastic limit for this system (refer to Table I).
We thus choose a value of y,, =0.015 (or 1.5%) in all our
shear simulations in the MG system to ensure a good signal-
to-noise ratio and to simultaneously operate within the linear
viscoelastic regime.

D. Effect of shear temperature

The predominant role played by temperature in visco-
elastic response is the softening of the material, leading to
more viscous character. We quantify this effect via
frequency-sweep simulations at various temperatures. Figure
5 shows the variation of loss modulus with frequency for
temperatures ranging from 30K to 800 K. We note that the
T, for the glass is ~815K. We observe that the high-

frequency peak is almost invariant with respect to
6
-@-200 GHz
5T |©-20 GHz ‘
¥-2 GHz
4 |-=-0.2 GHz '

7 = 0.015 chosen for
shear simulations

N

Loss modulus, G" (GPa)
- w

1072

o

101

Txy

FIG. 4. Effect of shear strain amplitude on viscoelastic response in MG.
Loss modulus is estimated for four different shear frequencies spanning four
orders of magnitude. Significant non-linearity in the response is observed at
strain amplitudes, 7., larger than about 0.04 (or 4%).

temperature. This is not surprising since this frequency
regime corresponds to frequencies in the range of thermal
vibrations, where the damping is harmonic, which is temper-
ature invariant.>*~*? The softening at higher temperatures
lowers the high-frequency modulus marginally.

In the lower frequency regime, however, we observe a
marked difference in damping — the softening effect is sufficient
to overwhelm the driving frequency and we see significant
damping at higher temperatures. At 800K (very close to the T,),
we observe that at the lowest frequency (f=5 x 10~ *THz), the
loss modulus begins to drop with frequency; here, although the
phase shift increases marginally with lowering frequency, we
observe that shear stress drops significantly (by ~60%) due to
enhanced softening at this low frequency.

IV. COMMONALITIES IN DAMPING MECHANISMS
IN GLASSES

A. Frequency-dependent damping

The frequency-dependent damping characteristics in the
MG system, namely, the high-frequency peak (in the THz
regime) and persistent damping in the low-frequency regime
beckons the following question—"are the characteristics of

15 : :
o Shear temperature
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©10f |v200k 600K '
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FIG. 5. Frequency-sweep simulations to study the effect of shear tempera-
ture on damping in MG. The maximum temperature (800 K) is just below
the T, for the MG, which is ~815K.
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viscoelastic damping in glasses more universal in nature and
can be understood mechanistically for a wide variety of inor-
ganic glasses?.” With this goal in mind, we extend our work to
study damping in four other glasses—Dzugutov glass, amor-
phous silicon (a-Si), the Wahnstrom glass, and amorphous sil-
ica. We perform oscillatory shear deformation simulations at
frequencies similar to the case of the MG system, to look for
typical characteristics in the frequency-dependent damping.

Shown in Table I is the list of simulation details, the poten-
tial used for describing interactions, and various system proper-
ties considered for this work, for all the glass models. We note
that we consider both unary (the Dzugutov glass and a-Si) and
binary glasses (Wahnstrom and amorphous silica), in addition to
the MG glass discussed so far, which forms the baseline for our
comparison of damping characteristics. The two most important
factors to be considered while comparing the damping properties
between various glasses are the elastic limit and the glass transi-
tion temperature (T,). The former affects the linearity in visco-
elastic response (as discussed in Sec. IIIC) and the latter
determines the relative scaling between the temperature at which
the material is deformed, and T,, where significant softening
occurs (see Sec. III D). Thus, to maintain comparative shear con-
ditions across all glasses, we set the shear strain amplitude and
the deformation temperature for the MG system as the base-
line, and scale the strain amplitude and deformation tempera-
ture of the remaining four glasses based on their respective
elastic limits and T,. The scaling is such that a common shear
strain amplitude (normalized by the elastic strain limit), and a
common deformation temperature (normalized by the glass
transition temperature) are used for all the glasses. These val-
ues are also given in Table I.

Figure 6 shows the comprehensive damping data from
frequency-sweep simulations for all the five glasses. Data
plotted in red triangles correspond to data from five cycles of
shear without a thermostat (i.e., under NVE conditions), and
those plotted in blue triangles are from 300 cycles of shear
in the high-frequency regime, in the presence of a Nose-
Hoover thermostat. The latter case is to check for stationarity
(i.e., invariance with respect to number of shear cycles) in
the stress-strain data. We observe only negligible differences
between the moduli computed for shear with and without a
thermostat. Moreover, the stress-strain profiles are stationary,
as observed from the Lissajous plots (shown in Fig. 7) for all
five glasses at the peak damping frequency, over 300 cycles
of shear. In addition, Fig. 6 also shows oscillatory shear
results for a fixed amount of time (as opposed to fixed number
of cycles), shown by green circle markers. Only minor differ-
ences were observed for damping for the two cases (fixed
time versus fixed number of cycles). We note that the fixed
time simulations (data shown by green circle markers) were
run for ~50ns that corresponds to 5 cycles of shear at the
lowest frequency, and 5000 cycles at the highest frequency.

Striking commonalities in the damping characteristics are
observed according to Fig. 6—first, in the high-frequency
regime (ranging from ~0.1 THz to ~10s of THz), all glasses
show a pronounced peak in damping. With decreasing fre-
quency starting from the peak, G” decreases as an approximate
power law (as shown later in Fig. 10) over an intermediate fre-
quency window for all glasses. Lastly, with further reduction
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FIG. 6. Frequency-sweep simulations for the five glass structures considered
in this work. For each glass, we show the variation of loss modulus as a
function of shear frequency. All glasses show a characteristic peak in the
high-frequency regime, and a nearly-invariant, finite damping in the low-
frequency regime (insets for a-Si and silica show the magnified portion of
the low-frequency regime). Data shown in red (A) correspond to 5 cycles of
shear under NVE, those in blue () correspond to 300 cycles under NVT,
and green symbols (@) correspond to moduli computed during shear for a
constant amount of time as opposed to the constant number of cycles.

in frequency, persistent (even weakly increasing in some cases)
damping is observed in all glasses, extending down to the
MHz regime. This is true irrespective of whether shear was
performed over a fixed number of cycles, or for a fixed amount
of time. The mechanisms behind these damping characteristics
are discussed in the following sections (Sec. IV B-1V D).

B. High-frequency damping

In our previous work in damping in crystalline compo-
sites, we showed that enhanced damping at frequencies in
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the range of natural vibrational frequencies of the material is
a direct consequence of large anharmonicity in the coupling
between vibrational modes (phonons).”> The predominant
vibrational modes in glasses, denoted as “diffusons,” lack a
well-defined wave vector and polarization®’ as opposed to
propagating, wavy, phonons in crystalline structures. An
extensive body of work in dissipation in disordered solids
points to the harmonic nature of damping,®***** where the
vibrational eigenstates act as a system of act as damped har-
monic oscillators.**%

First, to check for correlation between the peak frequency
for each glass (as obtained in Fig. 6) and the corresponding
vibrational frequencies, we compute the vibrational density of
states (DOS), g(f), from the Fourier transform of the velocity
autocorrelation function.*>*® Glasses show an excess in vibra-
tional density of states (referred to as the Boson peak) in com-
parison to the Debye prediction.*” The Boson peak is readily
discerned as the peak in the reduced density of states, [g(f)/f]
when plotted as a function of frequency. It is of immediate
relevance to compare both the profiles of DOS, and the posi-
tion of the Boson peak, with the frequency-dependence of
damping. In Fig. 8, the loss moduli from Fig. 6 are plotted
along with the DOS for all five glasses, with both sets of data
normalized by their maximum for easy comparison of the
frequency-dependence. Insets to the figure show the reduced
density of states for each glass. Excess in the reduced DOS
manifests as either as a broad peak or a bunch of peaks, with
an additional divergent peak in the limit of zero frequency
(the so-called quasi-elastic peak for frequencies below the
range of interatomic potential®®). It is immediately apparent
that the loss moduli for glasses follow approximately the
DOS (for network glasses, a-Si and silica, there are apparent
differences in the profiles for frequency dependence of loss
modulus and DOS that require a more detailed investigation).
Additionally, an important observation is that the peak damp-
ing occurs at frequencies much larger than the Boson peak
(typically an order of magnitude larger) for all glasses, consis-
tent with a previous study on damping in a Lennard Jones
glass.89

Another way to represent the relation between the peak
damping frequency and the DOS is to look for correlations
between the two. We plot the peak damping frequency as
function of the weight-averaged vibrational frequency from
the vibrational density of states (DOS), d; in Fig. 9. The
weight-averaged frequency was computed as f,, = > fi.d;/
>~ d; where, f; is the DOS frequency. As seen from the fig-
ure, there exists a strong correlation between the two, signi-
fying that damping in the THz regime essentially stems from
the direct excitation of vibrational modes by the driving fre-
quency. A detailed analysis of the excitation and discussion
on the harmonic damping mechanism is presented in Sec. V.

C. Damping in intermediate frequency—power-law
scaling

At frequencies below the peak damping frequency, we
observe that a distinct power-law scaling between the loss
modulus and frequency exists. This can be observed clearly
in Fig. 10, where loss moduli from Fig. 6 are plotted with a
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FIG. 8. Comparative plots of loss moduli (green squares), vibrational den-
sity of states (DOS) and reduced density of states (insets) for all five glasses.
Loss moduli data are the same as those reported in Fig. 6.

log-log scale. The power-law exponents are noted for each
glass. The scaling holds for intermediate frequencies for all
glasses, down to ~50 GHz for the Cu-Zr MG, Dzugutov, and
Wahnstrom glasses, and till ~100 GHz and ~1 THz for silica
and a-Si. First, this scaling is consistent with a large body of
work on sound attenuation’®™® and propagation of shock
waves in viscoelastic materials’ and damping in nanome-
chanical resonators.®® They all exhibit a power-law scaling
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loss modulus as obtained in Fig. 6 and the average frequency obtained from
vibrational density of states (DOS) for each glass.

with respect to frequency, with a power law exponent rang-
ing from O to 2.

Second, we note that the scaling for Cu-Zr MG, Dzugutov,
and Wahnstrom glasses (which can be classified as “atomic” or
“non-network™ glasses) are all close to 1, and have a large
goodness of fit. On the other hand, silica and a-Si (which are
“network” glasses), show noticeable shoulders in the power-
law fits, with a-Si showing a much larger exponent. We believe
the nature of the power-law scaling in this frequency spectrum
is inherently tied to the vibrational frequencies of the glass. As
seen from the vibrational density of states plotted in Fig. 8, the
noticeable peak positions for the acoustic and optical vibra-
tional modes for silica and a-Si, approximately coincide with
the shoulders observed in the loss moduli.

D. Low-frequency damping and structural relaxation

At frequencies below the power-law scaling regime, all
glasses exhibit persistent damping, down to ~50MHz (as
seen in Fig. 6). With a view to explain this phenomenon, we
take a cue from the inherent metastability of glasses that
results in the formation of local deformation clusters, known
as “soft spots,” under loading. These soft spots are typically
associated with shear transformation zones and eventual
plastic deformation,®*®*?>¢ and could play a role in damp-
ing during the oscillatory shear deformation. Of particular
importance would be the role of shear frequency employed
on the evolution of such clusters. This mechanism is sup-
pressed at frequencies corresponding to the high-frequency
peak (in the THz range of vibrational frequencies) and leads
to the persistent damping in the low-frequency regime. We
note that in the low-frequency regime, averaging over a
larger number of cycles was precluded by the high computa-
tional expense (see Fig. 6); however, loss modulus is
expected to have acceptable stationarity, owing to the rela-
tively slow rate of evolution of soft spots.

Here, we study the evolution of such soft spots or clusters
as a function of shear frequency, for all the glasses and the
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results are shown in Fig. 11. These simulations are performed
under constant temperature (NVT) conditions, where the total
time for shear deformation is fixed (as presented in Fig. 6).
The total simulation time is fixed at 50 ns. The criterion for an
atom to contribute to a cluster is that it should have a dis-
placement at least equal to the shear amplitude and should
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have at least one other displaced neighbor within a cutoff dis-
tance equal to the first shell of the nearest neighbors. This cut-
off corresponds to the first minimum in the pair correlation
function, g(r). We observed that a-Si and silica exhibited neg-
ligible cluster formation with this criterion, hence, the dis-
placement amplitude was reduced to half the shear amplitude
for these two cases.

Figure 11 shows the formation of both average cluster
size and percentage of atoms that contribute to the clusters (the
irreversibly deformed volume). For all glasses, we observe a
decrease in cluster sizes for increasing frequency. Similarly,
the volume of cluster atoms (panel b) shows a decreasing trend
with increasing frequency. One exception here is the a-Si glass,
which shows an increase in cluster volume (at 10 THz), albeit
consisting of smaller cluster size compared to lower frequen-
cies. This frequency-dependent cluster formation is, in fact,
further accentuated for the case of constant number of shear
cycles (as depicted in Fig. 6). We argue that the larger amount
of time available for nucleation and growth of clusters at lower
frequencies leads to a nearly-constant or even slightly increas-
ing damping with decreasing frequency. A similar phenome-
non for “viscous flow units” was observed by Wang er al.”’
during cyclic deformation of metallic glasses, albeit at high
temperatures required for their activation, and by Priezjev®®"’
who demonstrated evolution of non-affine localized deforma-
tion during shear of a model binary Lennard—Jones glass.
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This low-frequency damping mechanism is a common
feature in all glasses, but the extent of damping depends on
the ease of formation of clusters, which in turn depends on
the intermolecular forces at the atomic scale. We thus show
that oscillatory shear deformation at low frequencies serve as
a powerful probe for quantifying the ease of local atomic
motion and the associated structural relaxation in glasses. On
the other hand, at high frequencies approaching the THz
regime (where cluster formation is suppressed), damping
occurs via coupling between the harmonic vibrational eigen-
states of the glass.

V. DISCUSSION

The harmonic nature of damping in disordered solids in
the THz frequency, i.e., at frequencies corresponding to vibra-
tional frequencies is well-established.*'**'® In glasses, the
Toffe—Regel (IR) limit'®" defines the frequency at which the
phonon mean free path becomes comparable with the wave-
length. Above the IR limit, vibrational modes can no longer be
defined with a wave-like character. Attenuation and damping
in glasses, both below and above the IR limit have been shown
to be harmonic in nature. Below this limit, elastic heterogene-
ities, i.e., heterogeneities in elastic moduli due to the inherent
structural disorder act as scattering centers for propagation of
vibrations, leading to harmonic Rayleigh scattering.'*>

Above the IR limit, and within the range of vibrational
frequencies, Damart ef al.** showed that damping arises from
coupling between vibrational eigenmodes that act as damped
harmonic oscillators. For a model silica glass, they showed
that application of an oscillatory isostatic deformation gives
rise to non-affine relaxations that in turn couple with the
vibrational states. An alternate picture for harmonic energy
dissipation in disordered, harmonic media can be found in the
theory of thermal conductivity in disordered solids by Allen
and Feldman.'® They showed that, using a Kubo—Greenwood
formalism, heat is transported by decoupled harmonic oscilla-
tors which are, in fact coupled by the temperature gradient.
The delocalized vibrational eigenstates, resulting from super-
position of the modes lead to non-zero off-diagonal elements
of the density matrix. This translates to non-zero off-diagonal
elements in the heat current operator, thus conducting heat.
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Thus, under non-equilibrium conditions, dissipation occurs
due to direct coupling between harmonic modes in the pres-
ence of the non-equilibrium field (in this case, the oscillatory
shear deformation).

A direct measure of the coupling between vibrational
modes and the frequency of the input shear deformation is
readily computed by measuring the temperature of each
vibrational mode, 7(f) during a non-equilibrium process
(oscillatory shear in this case) according to Eq. (1), following

the work of Shenogina et al .,104
f+Af/2
J Cne(f)df’
f=4f/2
T(f) = Teo ~7ar/2 : (1)
J Cro(f)df'
f—Af/2

Here, Cyg and Cgp are the velocity autocorrelation func-
tions computed during the non-equilibrium (NE) shear process,
and under equilibrium (EQ) respectively. Tgp is the system
temperature in the absence of shear, i.e., under equilibrium.
Numerical integration is performed over frequency windows
of length Af, centered at frequency f. Shown in Fig. 12 are the
temperatures of vibrational modes calculated for Cu-Zr MG
(panels a and b) and silica (panels ¢ and d), during oscillatory
shear at two frequencies close to the THz regime, and, which
fall within the vibrational density of states for each glass. The
equilibrium simulation was performed at 350K (T = 350 K),
and the corresponding shear simulations were performed over
simulation times corresponding to a temperature rise from
300K to 400K, such that the average temperature equals
Tgp. The only exception was for the silica simulation at
f=2.27THz, where rapid and strong damping results in an
average temperature ~580 K. Thus, the rise in temperature is
modest in comparison to T,. As can be clearly seen from the
figure, the modes closest to the driving shear frequency (indi-
cated by solid black lines) are selectively excited for all cases.
This suggests that the energy pumped in via the plane wave-
like shear deformation directly excites a set of vibrational
modes whose frequencies overlap with the driving frequency,
which subsequently dissipate energy harmonically. A signature
for harmonic damping is its temperature-independence widely
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reported in literature,z’%12 which is also observed for the Cu-Zr
MG system in this work (see Fig. 5), for silica (not shown
here), and presumably for the other glasses considered in this
work as well.

The above picture of excitation of vibrational frequen-
cies holds only in the high-frequency regime; at frequencies
far below the vibrational frequencies, the time scale associ-
ated with the shear period is much larger than the time for
heat diffusion, and the predominant damping mechanism
transitions to local plastic deformation (soft spots) as out-
lined in Sec. IVD. A large body of work in literature has
dealt with studying the nature of local plastic events and
shear transformations in amorphous solids under constant
rate shear deformation;los*m7 it would be interesting to com-
pare statistics of such cluster formation with the oscillatory
shear case. Priezjev’®?" studied the effect of periodic shear
deformation on evolution of atomic rearrangements, and
compared them with a no-shear, quiescent case. He showed
that displacements are predominantly non-affine, the magni-
tude of which increases with strain amplitude. Interestingly,
non-affine deformations were observed even for the quies-
cent case. In this context, we show that alternatively, lower-
ing of shear frequency also leads to an increase in the cluster
size (as seen in Fig. 11).

It is worthwhile to discuss our results for local atomic
rearrangements (soft spots) in the context of o and f relaxa-
tions in glass. Under oscillatory shear, these relaxations are
characterized by the variation of loss modulus as a function
of temperature, or equivalently, as a function of frequency as
considered in this work. o relaxation is associated with a
peak in loss modulus close to T,, while S relaxation is
characterized by finite loss modulus at sub-T, temperatures
(sometimes down to room temperature).log*110 Alternatively,
o and f§ relaxations can be associated with low (<kHZ
range) and high frequency (Hz to GHz regime) portions of
the damping spectrum, depending on the properties of the
glass, and the temperature.”® Since we study damping of
glasses at temperature close to 0.3 T,, and at frequencies
spanning from MHz to THz, we rule out the role of « relaxa-
tions completely. However, one cannot rule out the role of 8
relaxations in our results, considering the temperature at
which the viscoelastic response is studied. Cohen e al.''®
used molecular dynamics to study the cooperative nature of
beta relaxations in a model Lennard Jones glass under oscilla-
tory shear, by pinning a small fraction of particles to the coor-
dinate frame moving with the affine transformation describing
the overall shear. Extending such a protocol to our glass mod-
els combined with novel experimental advancements may
possibly reveal the role of beta relaxations in this frequency
regime (~MHz). Broadband dielectric spectroscopic studies
on structural glasses such as a-Si and silica may reveal addi-
tional insights on the frequency-dependence. Moreover, relax-
ation mechanisms in glasses, along with the associated atomic
rearrangements depend strongly on the strain amplitude of
the oscillatory shear.!!! Indeed, with respect to relaxation,
the complex interplay between temperature, frequency, and
strain amplitude for characterization of loss moduli may
reveal further commonalities, and requires further detailed
consideration.
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Finally, an important control parameter during the shear
simulations is the thermostat, and its role in the dissipation
mechanism. We note that the role of thermostat in the high-
frequency regime is negligible, as seen in Fig. 6 for shear in
the presence and absence of a thermostat. Damart er al.*?
reported a qualitatively similar trend in the high-frequency
damping for silica. However, at frequencies below the range
of vibrational frequencies, they observed that the quality fac-
tor (or equivalently, the loss modulus) shows a direct scaling
with the damping constant of the thermostat. This suggests
that moduli in the intermediate and low frequencies reported
here could be affected by the choice of the thermostat.
However, qualitatively, damping in low frequencies arising
via the local deformation of atomic clusters is expected to be
present irrespective of the choice of the thermostat.

VI. SUMMARY AND CONCLUSIONS

Using non-equilibrium molecular dynamics oscillatory
shear simulations, we have studied viscoelastic damping
extensively in a model Cu-Zr metallic glass (MG), and show
a striking commonality in damping characteristics for various
glasses. The two important characteristics in the dependence
of damping (as characterized by the loss modulus, G”) on
shear frequency are: (a) the presence of a well-defined peak in
the high-frequency (THz) regime and (b) persistent, nearly-
constant damping in the intermediate and low frequency
regime. We show that the quench rate plays an important role
in damping, especially at low frequencies—larger quench
rates (glass at shallower energy minima) lead to a greater
degree of local deformation, leading to larger damping.
Closely associated with this is the time-dependent loss modu-
lus for a glass with a large quench rate. The two other key fac-
tors are shear amplitude and shear temperature—shear
amplitudes near and beyond the elastic limit exhibit non-
linear viscoelastic response and larger shear temperatures
result in larger loss moduli in the low-frequency limit.

We show a clear correlation for the peak frequency (in
the THz range) in damping response with the average vibra-
tional frequency of glass. Vibrational modes close to the
driving frequency are selectively excited, which then result
in dissipation of energy harmonically. At intermediate and
low frequencies (reaching down to ~50 MHz), we show that
persistent damping in all glasses is a result of long time-scale
local, irreversible deformation. From this study, we demon-
strate that oscillatory shear deformation serves as a powerful
probe for furthering mechanistic understanding of damping
in the MHz to THz regime, and particularly in glasses, to
quantify the degree of local atomic motion and associated
stress relaxation at low frequencies.
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