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ABSTRACT: The viscoelasticity and dynamic properties of a model
dynamically asymmetric binary polymer blend are studied via
molecular dynamics simulations. The model blend system is made
up of two chain types having a large glass transition temperature (T,)
difference and presents two blend morphologies: a well-mixed,
homogeneous blend and a phase-separated blend. These two
morphologies represent dynamically coupled and dynamically
confined states. The well-mixed, homogeneous blend exhibited greater
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storage modulus and slower low-T, matrix chain dynamics compared
to the phase-separated blend. The influence of various system parameters, such as high-T, chain length and (volume)
concentration, and shear frequency on various static, dynamic, and viscoelastic properties is investigated to identify the source of

the observed stiffening in the well-mixed, homogeneous blends.

1. INTRODUCTION

Systematic research focusing on the viscoelastic properties of
dynamically asymmetric polymer blends, whose two compo-
nents have distinctly different dynamics, as a function of
temperature and composition is an active research field.'~” For
example, Kapnistos et al. studied rheology and phase diagram of
blends consisting of polystyrene, PS, and poly(vinyl methyl
ether), PVME, with a low critical solution temperature (LCST)
that undergoes phase separation while the temperature is raised
from 80 to 120 °C.” They found that in the homogeneous state
the storage modulus decreased with increasing temperature;
however, the storage modulus increased above the LCST due
to phase separation.” In another study that employed a blend
system with an upper critical solution temperature (UCST), a
similar outcome was obtained where the phase separated state
was observed to be stiffer than the miscible state.

The dynamic properties of asymmetric blend systems were
also intensively studied. Entanglement-like features, such as
nonexponential relaxation of Rouse normal mode autocorrela-
tion function, were found in the unentangled polymer blends
with large dynamic heterogeneity.”* > Generalized Lan§evin
equation formalism,”">'® randomized Rouse model,"*">'* and
mode coupling theory”'”'”*® have been introduced to explain
these abnormal dynamic properties of unentangled blends. It is
commonly accepted that the increase of dynamical hetero-
geneity in binary blends, which could be achieved by a decrease
in temperature, is responsible for the existence of entangle-
ment-like features in unentangled blends.®”">~'%%*

We performed molecular dynamics simulations to study the
viscoelasticity and dynamics of dynamically asymmetric
polymer blends as a function of chain length, concentration,
and state of miscibility (homogeneous vs. phase-separated).
These simulations were inspired by the work of Senses et al,
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whose work showed thermal stiffening in poly(ethylene oxide),
PEO, and poly(methyl methacrylate), PMMA, blends contain-
ing silica nanoparticles. Although the PEO/PMMA-silica
nanocomposite system initially shows softening upon heating
during which the storage modulus curve follows that of neat
PEO, as the temperature approaches the T, of PMMA, the
system stiffens and the storage modulus first approaches and
then follows that of neat PMMA. Senses et al. also showed that
this thermal stiffening behavior was reversible and repeatable.
This unique thermal stiffening behavior was attributed to the
desorption of high-T, PMMA chains from silica nanoparticles
during the heating cycle (and adsorption during the cooling
cycle).””

In the current study, a simpler system, one that is made up of
a dynamically asymmetric polymer blend, was chosen to
explore the hypothesis provided by Senses et al. During
molecular dynamics simulations, the blend system was designed
to exhibit heterogeneous dynamics by manipulating the stiffness
of the two chains such that the matrix chains have a low T, and
the minority chains have a high T,.

2. THEORETICAL BACKGROUND

In this section, theories such as randomized Rouse model and
generalized Langevin formalism are briefly introduced to
provide the necessary background on heterogeneous polymer
blends.

2.1. Rouse Model. In the Rouse model, a linear polymer
chain is represented by N beads, which interact with
neighboring beads through an entropic spring with a spring
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constant of ~3kyT/b* (ks is the Boltzmann constant, T is
temperature, and b is the bond length) and experience
stochastic forces, f,(t), from the surrounding environment.
The stochastic forces have a Gaussian distribution and satisfy
the following conditions:

(f,() =0

<fna (t) fmﬁ (t,)> = ZkBTé’O(Snméaﬂ&(t - t/) (2)

where {; is the friction constant, 6 is the Kronecker delta
function, indices n and m represent chains, and o and f
represent Cartesian axes. Equations 1 and 2 show that friction
forces imposed by environment onto chains are spatially and
temporally uncorrelated. The Langevin equation becomes a
linear equation of the coordinates of chain beads, R().

dR (1)

(1)

3k, T

é’O dt - bz [ZRn(t) - Rn—l(t) - Rn+1(t)] +fn(t)
()
The solution of eq 3 yields the following:
1 « 1\pr
Xpa(t) = N E {Rl(x(t) COS[(i - E)F:I} (4)

where Rouse mode index, p, ranges between 0 and N — 1. The
time autocorrelation function of normal modes can be used to
characterize the relaxation of Rouse chains. For example, when
p = 0, the following equation is obtained:

2kT

([Xou(t) O C

— Xoa(0)]-[Xop(t) — Xop(0)]) =

©)

This autocorrelation function corresponds to diffusion of the
center of mass (COM) of Rouse chains, and the diffusion
coefficient becomes kyT/N(,.>°

Forp >0
kT ( j
exp| ——
kp %

Coszz
3ﬂ'szTp2

(Xpa(t)-X(0)) =

(6)
where

_ 61’k T
p = N p~  and T, =

(7)

These autocorrelation functions correspond to different
relaxation modes with wavelengths of N/p. It can be seen
that the relaxation time, 7,, is proportional to p~>. The power-
law relation 7, ~ p™ holds in neat melts and dynamically
asymmetric blends, but the exponent increases VVlth increasing
heterogeneity in dynamically asymmetric blends.”

2.2. Randomized Rouse Model. In the randomized Rouse
model, the friction coefficient follows a log-normal distribution
centered around the average mobility obtained from exper-
imental'>'®

f(C; Cos o) =

_(In¢-In &)’
{,’ oN2rn 26° (8)
where ¢ is the distribution width and is the only fitting variable,

and {, is the average friction coeflicient obtained from
15,18
experiments, such as neutron backscattering. In this
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model, the space and time correlation functions of friction
forces are still neglected. Then the Langevin equation becomes

dr,(t)
dt
N-1
3k, T
an{b—i[Rm(t) — 2R, (t) + R,_,] + f(m, t)}

m=0
©)
where L,,, = 1/{,0,, is the diagonal mobility matrix. This

Langevin equation can be solved semi-analytically by varying
distribution width, 6."'® When the friction coefficient
distribution is wider, which means higher dynamical hetero-
geneity, the relaxation time of normal mode correlation
function shows greater power-law exponent x (z, ~ p~*). A

very similar feature is observed in entangled polymer melts and
ds. 273132

blends

2.3. Generalized Langevin Equation. In the generalized
Langevin equation formalism, the memory kernel represents
the spatial and temporal correlation of friction forces imposed
against the tagged chains from surrounding enwronment
Following the formalism proposed by Schweizer”® and
Colmenero,” the integro-differential equation of normal mode
of the faster moving (softer) component in the polymer blend
can be written as follows:

= 2% (1) + B ()
0 3

%, + /t dt' T(t — )
(10)

where [',(t) is the memory function.” Considering that (X,(0)-
F (t)) = 0, a similar integro-differential equation can be

deduced from eq 10:
dX,(0)X,(1)) (O)X (t)> /
d Tt —
B (X,,(O)X,,(f)>
5 (11)

If only long wavelength relaxation of softer component is taken
into account, it can be assumed that the memory kernel decays
much faster than the time correlation functions of normal
modes of softer chains. Then, the integral in eq 11 can be
approximated by the following product:

fdtr(t

A, >x,,<o>> , ,
= T/0 dr' T(t -t

dx,(t')
dt’

d<X (t )X (0))

d(X (t )X (0))

And eq 11 can be solved as follows:

) (12)
woxo) [ g g
XX, 0) T2 o (13)

where {(t) is the extra friction force caused by the memory
kernel and is defined by the following equation:

£(t) = fo Ty ar

dt’
S+ <)

(14)

For classical Rouse mode, {(t) vanishes, and therefore eq 13 is
reduced to the well-known exponential decay function. As long
as the heterogeneity in the dynamics of the system is large
enough, {(t) could significantly influence the denominator of
the integral in eq 13, resulting in a nonexponential decay of
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normal mode correlation functions. A stretched exponential
decay can be a good approximation for the numerator term in
eq 13.

p

(,(0X,(0)) ~ exp[—i,]

2 (15)

In eq 185, the stretch exponent, /3, should be less than unity, and

the relaxation time 7, should follow the power-law relation (z,

~ p™) of a new exponent x, which could be used to

characterize the dynamics heterogeneity of the system—a

greater exponent corresponds to a greater degree of system
heterogeneity.

3. SIMULATION METHODOLOGY

3.1. Polymer Chain Structure and Force Field. In the
current study, polymer chains are described by a united atom
model, where adjacent “beads” representing units of polymer
chains are connected by finitely extensible nonlinear elastic
(FENE) bonds.”” Nonbonded pairwise interactions between
beads are described by a shifted Lennard-Jones (LJ) potential:

12 6
(6= )]
(Jshifted y= r r Te Te
0 rxr.

(16)
where r is the distance between nonbonded beads, o, is the
distance between two beads where the potential energy is equal
to zero, r. (= 2.50,) is the cutoff, and g, is the energy well
depth. The average FENE bond length b is 0.976;. In order to
create two different polymer chains exhibiting different
dynamics, the bonded interactions between adjacent beads in
one type of chain was described by FENE and L] potentials,
whereas the second type of chain included many-body bending
and torsional terms in addition to FENE and LJ interactions.
For both types of chains, all nonbonded interactions were
described by LJ interactions. These two different chains were
referred to as A (stiffer chains using FENE, 1], and many-body
interactions) and B (softer chains using only FENE and LJ).
Throughout the current study, softer B chains form the matrix
into which stiffer A chains are added at varying concentrations.
The glass transition temperatures of neat A (N, = 50) and neat
B (N = 50) are 1.2—1.5¢y/ky and ~0.45¢y/ky (&o/ky is the

reduced unit for temperature), respectively.
For the stiffer A chains, the angle potential between three
adjacent A beads within the same chain is defined as follows:

Uy = Kyg(0 — 6,)° (17)

where 0 is the bond angle, 6, (=120°) is the equilibrium bond
angle, and K, = 60¢,/0,". In addition, a torsional potential was
used to make A chains even stiffer compared to B chains.

Uy = K;(1 + cos 2¢) (18)

where ¢ is the torsion angle and K, = 40¢,/ o

The entanglement length, N,, for softer B chains was
reported to be 85>’ while for A chains with many-body
interactions, the entanglement length was reported to be
between 28 and 45.** In the current study, the length of B
chains (Ng) was kept constant at S0 and the length of A chains
(N,) was varied from 3 to 100. All simulations were performed
with the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS),*® and the visualization of the simulation
box is performed via OVITO.”

3.2. Model Structures. In all simulations, the total number
of beads was kept as close to 40 000 as possible, and the masses
of A and B beads are the same. Two distinct structures
corresponding to a well-dispersed blend and a phase-separated
blend were prepared. These two distinct structures are referred
to as “mixed” and “unmixed”, respectively, throughout the
article. Mixed blend structures were prepared by the following
procedure. Chains were randomly placed into the simulation
box with periodic boundary conditions turned on. Since it is
possible for beads to overlap with each other initially, a special
pairwise interaction (a “soft potential”) was temporarily applied
to remove overlaps (see “unoverlap” procedure in the
LAMMPS documentation). These initial systems were run at
constant volume for 1 million time steps with a time step (At)

of 0.0057" (where 7’ is the reduced time unit, 7’ = 6,./m,/&,),

with a Langevin thermostat during which the magnitude of the
soft potential was gradually ramped up. After all overlaps were
eliminated, nonbonded pairwise potential was switched to the
shifted L] potential (with £44 = £, = €5 = €y and 04 = Opp =
Opp = 0'0), and the systems were run at constant pressure (P =
0) and temperature (T = 0.5¢,/kg) for S million steps with a
time step of 0.0057". Then many-body interactions for all A
chains were turned on and the simulations were performed with
an NPT ensemble for 40—100 million steps using a time step of
0.0057". Production runs were performed until chains move, on
average, a distance that is equal to their average radius of
gyration (Rg)

To prepare unmixed blends, after the overlaps were removed,
a shifted L] potential with €4, = 10g, was applied to all A—A
bead interactions, while keeping €55 = €3 = &, Under this
setting, the phase separation is induced enthalpically. These
systems were simulated with an NPT ensemble at a higher
temperature of 2.0€y/kg for 2 million steps. At this temperature,
beads have enough mobility to drive the system to phase
separation. Then the L] potential was shifted back to €4, = €3
= gpp = &y, and the temperature of the system was reduced to
0.5€,/kg. Once the temperature is lowered and the LJ potential
is switched back, the phase-separated morphology persists
because of the slow kinetics at the lower temperature. Finally,
many-body interactions for A chains were turned on, and all
systems were equilibrated with an NPT ensemble for 40—100
million steps. Unmixed system production runs were performed
in the same way as was done for the mixed blend systems. In
the current work, the production runs were always performed
at a constant temperature of 0.5¢y/kg in order to kinetically
arrest both mixed and unmixed morphologies. The snapshots of
the mixed and unmixed blends are shown in Figure 1.

Figure 1. Snapshots of (a) mixed and (b) unmixed blend
configurations. Red spheres represent A chain beads, and blue spheres
represent B chain beads.
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3.3. Analysis of Dynamics and Viscoelasticity.
3.3.1. Analysis of Dynamics. Mean-squared displacement
(MSD) and Rouse mode analysis were used to characterize
the dynamics of polymer chains and beads. For all blend
systems, five independent samples were simulated using an
NVE ensemble with a time step of 0.0017" after equilibrating
each system using an NPT ensemble. The coordinates of beads
and chain center of masses were recorded to calculate bead and
COM MSDs and autocorrelation function of Rouse modes.
MSDs and Rouse mode autocorrelation functions within each
time interval were averaged over multiple time windows of
different time origins. MSDs and Rouse autocorrelation
functions were calculated from successive NVE simulations,
and the kinetically arrested structures did not show any aging
(changes in morphology) on the time scale of our simulations.

3.3.2. Oscillatory Shear Deformation. 1t is well-known that
study of viscoelasticity of polymers by equilibrium molecular
dynamics (EMD) simulations often suffers from the problem of
convergence of stress autocorrelation.*® In the current work,
the viscoelasticity of polymer blend systems was studied via
oscillatorgr shear flow implemented by SLLOD equations of
motion,”’ e%uivalent to Lees—Edwards “sliding brick” boundary
conditions.”” Operationally, the upper plane (z-axis plane) of
the simulation box was shifted parallel to the lower plane along
the x-axis, such that each point in the box has a “streaming
velocity” along the x-axis direction with a linear gradient along
the y-axis direction. These streaming velocities were subtracted
when the temperature of the system was calculated. This way
an oscillatory shear was imposed on the system as follows:

yxy = )/0 sin(ZITft) (19)
where y, (= 0.02) is the oscillatory shear amplitude and f is
shear frequency ranging from 0.0017" to 0.02/7’. Each
nonequilibrium molecular dynamics (NEMD) simulation
contained at least 20 oscillatory shear cycles, and the virial
shear stresses, 7,,, of the whole system were recorded every five
time steps. The shear stress was fitted by the linear
viscoelasticity equation:

7y = 7o sin(2aft + 5)
= 17, cos(8) sin(2zft) + 7, sin(5) cos(2xft) (20)

where 7; is the shear stress amplitude and 6 is the phase shift.
Storage (G’) and loss (G”) moduli are defined as follows:

G = 7, cos(5)

}/0 (212)
G = 7, sin(5)

T (21b)

In addition, by calculating the virial shear stress associated with
every bead, it is possible to monitor stress for each blend
component (7, or 7), and the corresponding storage and loss
moduli. Of course, it is assumed that each blend component
experiences the same shear strain as the whole system. Note
that during the oscillatory shear deformation, we found that the
number of contacts between A and B beads in unmixed blends
did not change significantly, so the conformation of unmixed
blends could persist during the oscillatory shear.

6296

4. RESULTS AND DISCUSSION

4.1. Static Properties. Static properties of the polymer
chains are important to have a better understanding of the
viscoelastic and dynamic properties. The radial distribution
function of A—B bead contacts, p,g(r), were calculated for
mixed and unmixed blend configurations (not shown). The
integral under the first peak in p,5(r) gives the number of A—B
contacts. For blends with N, = Ny = 50 and X, = 0.1, the
average number of A—B contacts in the unmixed and mixed
blends was 5.44 and 9.22, respectively, and therefore there are
significantly more interactions between the high- and low-T,
chains in the mixed blends. This observation is key to
understanding the stiffening behavior observed in the mixed
blend, which will be discussed in section 4.2.

The dependence of the normalized radius of gyration of
high-T, A chains, (R.’)/(N,b*), on N, at various blend
concentrations is presented in Figure 2. When N, is less than

0.35f
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g 030+
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Y- XA =0.05, Mixed

g
~ 025}
\ .._XA =0.10, Mixed

020+ ""XA =0.20, Mixed
y ..-XA =0.10, Unmixed
0.15——— .
35710 20 50
NA

Figure 2. Normalized radius of gyration ((Rgz) /(N,b*)) of A chains in
mixed and unmixed blends as a function of A chain length (N,) at
various concentrations.

10, (R;)/ (N4b?) increases almost linearly with N,, and no
effect of morphology (mixed vs unmixed) or concentration is
observed, suggesting that short chains are rigid regardless of
concentration or morphology. For N, > 20, the high-T, A
chains seem to become more flexible, and a strong dependence
on concentration and blend morphology is observed.
Interestingly, high-T, A chains become more flexible (or
approach that of ideal chain behavior faster) with increasing A
chain concentration (X,). At the same A chain concentration
(X = 0.1), high-T, A chains approach ideal behavior faster in
the unmixed blend compared to mixed blend. These two
observations suggest that high-T, A chains behave like ideal
chains or become more flexible when there are more high-T, A
chains in their local environment.

4.2. Viscoelasticity Analysis. The phase shifts and storage
moduli of A—B blends and neat melts of A and B chains as a
function of shear frequency are presented in Figure 3. The
viscoelastic properties of neat high-T, polymer A are almost
frequency-independent (within the frequency range studied)
with a phase shift of ~5°, which indicates that neat polymer A is
rather elastic, which is not surprising considering that this
polymer is well below its glass transition temperature. By
contrast, the moduli and phase shift of low-Tg neat polymer B
exhibits strong frequency dependence and a highly viscous
behavior, particularly at low frequencies. Interestingly, the
storage moduli of neat polymer B approaches to that of
polymer A at high frequencies. We attribute this to the fact that
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Figure 3. (a) Phase shifts and (b) storage modulus of neat polymer A
and B and blends (mixed and unmixed) of A and B chains as a
function of shear frequency. Ny = N = 50 and X, = 0.1 for all blends.

while the A chains are more rigid, the B chains have higher
density, leading to similar modulus at high frequencies.

As expected, the phase shifts of both mixed and unmixed
blends are within the range delineated by phase shifts of the
low- and high-T, neat polymers. The same is true for storage
moduli but only at the low frequency range. Also, the phase
shifts and storage moduli of both the mixed and unmixed
blends show a strong frequency dependence similar to that
exhibited by neat low-T, B polymer.

The most striking observation is that across the whole
frequency range the storage modulus of the mixed blend is
greater than that of the unmixed blend. Conformation related
stiffening was observed in similar systems experimentally. For
example, in a study performed on polystyrene (PS) and PVME
blends, Kapnistos et al.” observed that phase separation led to
stiffening, which was attributed to the formation of interfaces
between stiff PS and soft PVME domains. In the current study,
the comparison is performed at the same temperature (below
the T, of the high-T, component but above the T, of the low-
T, component) for both mixed and unmixed systems; however,
the mixed system presents a greater modulus than the unmixed
system, which is the opposite of what Kapnistos et al
presented. In the subsequent sections, we will provide a
number of observations aimed at elucidating the underlying
physics leading to the greater stiffening observed in the mixed
blend compared to the unmixed blend.

4.3. Chain Diffusion and Non-Gaussianity Parameter.
The center of mass (COM) and monomer (bead) mean-square
displacements (MSDs) of low-T,, B chains as a function of time
are shown in Figure 4. At short time scales (t < 0.17"), bead
MSDs show ballistic dynamics both in the neat B melt and in
the mixed and unmixed blends. The mixed and unmixed
blends’ MSDs start deviating from that of the neat B melt
around t ~ 1—107', which can be attributed to the presence of
A chains and their effect on the dynamics of B chains in the
blends. However, it is clear that blend morphology has an
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Figure 4. Comparison of the center of mass (COM) and monomer
(bead) mean-square displacements (MSDs) of B chains in neat B melt
and A/B blends. Ny = N = 50 and X, = 0.1 for blends.

important role on the MSDs of B chains, since B chain MSDs
in mixed and unmixed blends exhibit significant differences.

At long time scales (t/7' > 1000), the MSDs of B beads in
both neat B melt and blends show a clear power-law ~t*
dependence on time, where x = 0.56—0.58, which is consistent
with the Rouse behavior (for which x = 0.5).>° The power-law
exponent for the COM MSD ranges between 0.6 and 0.8,
which is in agreement with the literature."> Most interestingly,
we observe that diffusion of B chains is slowed down by A
chains in the mixed blend more significantly than in the
unmixed blend. This and previous observations suggest that the
high-T;, A chains act as obstacles to the movement of low-T, B
chains, and the A chains are more effective obstacles in the
mixed blends than they are in the unmixed blend.

The non-Gaussianity parameters (,) of B beads in the pure
B melt and in mixed and unmixed blends as a function of

=3
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o o
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0.2 v
0.0 e
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Time (TO)

Figure S. Non-Gaussianity parameters of B beads in neat B melt and
in mixed and unmixed blends. Ny = Ny = 50 and X, = 0.1 for blends.

simulation time are shown in Fégure 5. The non-Gaussianity
parameter is defined as follows:”

)
S(r¥ ()Y

and is a measure of heterogeneity in dynamics. In both the neat
B melt and blend systems, the non-Gaussianity parameters
display two peaks: a small peak at /7" ~ 0.1 and a strong peak
within t/7" ~ 10—100. The position and intensity of the first
peak are the same for all systems, whereas the second peak
position and intensity depend on the system configuration as
follows:

a,(t) = (22)
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~0.50 t/7, ~ 10—20 neat B melt

a, =4 ~0.65 t/7y~ 30—40 unmixed blend

~0.95 t/t, ~ 40—50 mixed blend (23)

The first peak position is related to the displacements of B
beads at small time scales (t/7’ < 0.1) and is associated with the
influence of local environment on the short wavelength
relaxation of B beads. All three systems show the same
intensity and peak distribution, which indicates that the
dynamics of the B beads are not influenced by the presence
of A chains in these short time scales. In addition, the
displacements of B beads follow a Gaussian distribution
because a, is almost zero.

The dependence of the second peak position and intensity
on system configuration is clearly influenced by the presence
and dispersion state of A chains within the B matrix. The non-
Gaussianity parameter of B beads is greatest in the mixed blend
system, suggesting that B beads in this system experience the
greatest dynamic heterogeneity (Figure S). At long time scales
(t/7" > 1000), non-Gaussianity parameter of B beads in the
neat B melt vanishes; however, for the two blend systems,
dynamic heterogeneity persists, and the non-Gaussianity of B
beads in the unmixed blend approaches to that in the mixed
blend. This is an interesting observation because it suggests that
although the unmixed blend remains unmixed, the nature of the
interactions of A and B beads at the A/B interfaces is similar in
both mixed and unmixed blends.

4.4. Rouse Mode Analysis. Rouse mode analysis was
performed to get further insight into the influence of high-T, A
chains on the dynamics of low-T, B chains. Figure 6 shows the

1.0
¢ 3
- $
S
£0.8
=1
Z
=0.6f
S
E A
2041 A
S s
2020, AL,
< N Aa,
0.0 —
10° 10° 10
Time (7'0)

Figure 6. Rouse normal mode autocorrelation functions of B beads in
neat B melt and in A/B blends. Red, blue, and green filled symbols
correspond to mixed blend, unmixed blend, and neat B melt,
respectively. Circles represent p = 5 and triangles represent p = 40. N,y
= N = 50 and X, = 0.1 for blends.

Rouse normal mode autocorrelation functions of B chains in
neat B melt and blend systems as a function of time. These
functions were fitted by eq 15 to obtain stretch exponents (/)
and relaxation times (Tp). Only the data from long time scales
(t/7' > 100) were used during fitting. All three systems show
nonexponential decay and have different stretch exponents.
Nonexponential decay for pure melts and blends was also
observed in the literature.”®* > Consistent with MSD results,
normal mode autocorrelation functions of B chains decay
slower in the blends than in the neat B melt for various modes
(p = S and 40). In addition, B chains relax slower in the mixed
blend compared to those in the unmixed blend.
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Figure 7 shows the relaxation time as a function of relaxation
wavelength (Ng/p). For the neat B melt chains, the power-law

8
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Figure 7. Rouse relaxation times of B beads in neat B melt and in A/B

blends with corresponding power-law exponents (z, ~ p™) as a

function of Ny/p. Ny = Ny = 50 and X, = 0.1 for blends.

exponent x (7, ~ p~*) was found to be equal to ~2.33, which is
consistent with that obtained by Brodeck." In the mixed blend
system, the power-law exponent x equals ~2.74, which is
greater than that of the unmixed blend (~2.66). Brodeck et al.
found that the power-law exponent increases from 2.2 to 3.5
when temperature was lowered from 1.5 to 0.33 as a result of
increasing heterogeneity in dynamics.15

4.5. Mechanism of Stiffening. 4.5.1. Effect of High-T,
Chain Length. As discussed in section 3.3.2, the viscoelasticity
of polymer blends can be decomposed into contributions from
each blend component. Results presented so far clearly showed
that mixed blends were stiffer than unmixed blends. In view of
these two observations, it is possible to ask which of the two
components (A or B) in the mixed blends is responsible for the
observed stiffening behavior. To answer this question, storage
moduli of blends was decomposed into A (G}) and B (Gj)
contributions as shown in Figure 8, from which the following
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Figure 8. Storage moduli as a function of A chain length in (a) mixed
and (b) unmixed blends. Circles, squares, and triangles represent total,
B, and A portion of storage modulus, respectively. X, = 0.1 and f =
0.001/7,.
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Figure 9. (a, b) MSDs of low-T, B beads in (a) mixed and (b) unmixed blends. (c, d) Non-Gaussianity parameters of low-T, B beads in (c) mixed
and (d) unmixed blends. Neat B melt result is also presented. Variation of N, is indicated in each figure. X, = 0.1 for blends.

observations can be made: (i) The overall shear stress is
dominated by the flexible, low-Tg B chains rather than the
stiffer, high-T, A chains—this is expected since A chains
constitute a small fraction of the system. (ii) Both G} and Gy of
the mixed blend are greater than those of the unmixed blend.
(iii) G} and Gy of unmixed blends are almost independent of A
chain length (N,); however, G, and Gj of the mixed blends
strongly depend on N, particularly for N, < 20.

MSD and non-Gaussianity parameters of B beads in mixed
and unmixed blend systems as a function of N, are presented in
Figure 9. It is clear that MSD and non-Gaussianity parameter of
B beads in the mixed blends depend more strongly on N,
compared to those in the unmixed blends. When N, increases
from 3 to 20, motion of B beads becomes slower in the mixed
blends. However, B beads diffuse faster when N, increases from
20 to 50.

We speculate that the origin of these observations is the
following: As N, increases, the mobility of A chains decreases
dramatically, which makes A chains act as immobile obstacles to
B chains. However, further increase in N, results in more
interactions of A beads among themselves, resulting in fewer
interactions between A and B beads. That is probably why we
can see that with increasing N, the mobility of B chains first
decreases and then increases.

Figure 10a shows the center of mass (COM) MSDs of A and
B chains in the mixed blends as a function of time for various
N, Interestingly, it can be seen that when A chains are shorter
than 20, the COM of A chains diffuse faster than B chains.
However, comparison of COM MSDs of chains having
different chain lengths can be a bit misleading. Therefore, in
Figure 10b we present the MSDs of A and B beads in the mixed
blends. First, we note that when A chain length is 3, A beads
move slower than B beads at short time scales (t < ~ 10007")
and faster at long time scales (t > ~ 10007"). Therefore, when
Ny = 3, A chains are not very effective obstacles for B chain
motion. When A chain length ranges from S to 10, A beads
move slower than B beads at all times accessible in simulations.
However, at long time scales (¢ > ~ 1000z"), the slope of MSD
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Figure 10. Comparison of the (a) COM and (b) bead MSDs of A
(dashed lines) and B (solid lines) chains in mixed blends as a function
of N. MSDs are shifted along the y-axis to enable better visualization,
and y-axis scale is not the same in (a) and (b). X, = 0.1, and variation
of N, is indicated in each figure.

of A beads is greater than that of B beads. It is therefore very
likely that at even longer time scales MSDs of B beads would
approach to those of A beads. However, for longer A chains
(N, =20 and 50), the slope of A beads’ MSD is smaller than B
beads’ MSD at long time scales (see Figure 10b). Therefore,
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when N, > 20, A chains become fully effective obstacles for B
chains across all time scales.

4.5.2. Effect of High-T, Chain Concentration. Stiffening
that is observed in mixed blend system could also be due to
percolation of A chains. Therefore, the “burning method” was
used to investigate if A chains percolate or not.” It was found
that percolation threshold (NP‘A) in blends containing S, 10,
and 20% A chains were 20, 10, and 7, respectively. This is
consistent with the fact that the percolation threshold for
elongated objects is inversely proportional to the aspect ratio*’
of the percolating objects, thus resulting in lower percolation
thresholds for longer A chains.

To investigate whether the percolation of A chains is
important to the stiffening mechanism, the storage moduli was
calculated as a function of N, for mixed blends at various
volume fractions (X,) (see Figure 11). For better visualization,

1.2

Normalized Storage Modulus

20
log (N N
Figure 11. Normalized storage moduli of the mixed blends as a
function of A chain length at f = 0.001/7'. Three curves represent

various concentrations of A chains. All three curves were normalized
with respect to their storage modulus at N = 100.

each modulus value was normalized by the modulus of the N,
=100 blend (at the same A chain concentration). It can be seen
that at a constant A chain concentration increasing A chain
length initially leads to increasing storage modulus. Just above
the percolation threshold (NP‘A), the storage modulus shows a
maximum that is followed by a slight decrease. For blends
containing 5, 10, and 20% A chains, the normalized storage
modulus maximum was observed at N, values of 50, 20, and 10,
respectively. For reference, N, values corresponding to the
maximum storage modulus are named “critical chain length”
and are labeled N_,. Interestingly, percolation threshold chain
length (N,,4) was found to be always smaller than the critical
chain length (N, ,). Therefore, it follows that (at a constant A
chain concentration) increasing A chain length slightly above
N, leads to the formation of a highly percolated and
immobilized network. However, further increase in N,, beyond
the critical chain length, leads to decreasing normalized storage
modulus because A chains themselves become softer (see
Figure 2) with increasing N,. In addition, as N, is increased,
the number of A—B contacts decreases (as discussed in section
4.5.1), which leads to further softening of the B chain matrix
and to an overall decrease in the normalized storage modulus.

4.5.3. Effect of Chain Mobility. Viscoelastic properties of
polymers depend on various factors. So far, our discussion
included identifying the effect of static, dynamic, and
viscoelastic properties. In order to investigate the role of A
chain conformation separate from the interplay of chain
dynamics, simulations were performed for the well-mixed,
homogeneous blend system where the high-T, A chains were

g
not allowed to move (“frozen”). As such, in these simulations
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frozen A chains act as static obstacles to the low-T, B chains. It

should be noted that A chains were frozen after full

equilibration and production runs as explained previously.
The bead MSDs and non-Gaussianity parameters of low-T, B

chains are presented in Figure 12. Interestingly, the mobility of
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Figure 12. (a) MSD and (b) non-Gaussianity parameters of B beads in
“frozen mixed” blends. Neat B melt result is also presented. N = 50
and X, = 0.1 for blends.

the B beads is slowest in systems containing the shortest
(frozen) A chains. This observation is opposite to that observed
in the regular mixed systems (Figure 9a). The fact that shorter
frozen A chains are more effective in immobilizing B chains
than longer frozen A chains can be explained by statics alone—
shorter A chains are stiffer (see Figure 2) and larger than their
longer counterparts prior to being frozen, and therefore shorter
chains have more number of A—B contacts.

Finally, Rouse mode relaxation power-law coeflicient and
relaxation time constants of B chains as a function of A chain
length (N,) in regular mixed and frozen mixed blends are
presented in Figure 13. The data show that the power-law
coeflicient and relaxation time constant of B chains in the
frozen mixed systems approach values characterizing the regular
mixed system in the limit of large N,. The dynamics of B chains
in the frozen mixed and regular mixed blends become similar to
increasing A chain length because as A chain length increases,
frozen A chains become less effective obstacles to the dynamics
of B chains as described in the previous paragraph.

5. SUMMARY AND CONCLUSIONS

Molecular dynamics simulations were performed on dynam-
ically heterogeneous blend system consisting of soft (low-T,)
and stiff (high-T,) polymer chains and having two distinct
morphologies: homogeneous (well-dispersed, “mixed”) and
phase-separated (“unmixed”). The main finding of these
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simulations was obtained in oscillatory shear simulations
performed at a temperature greater than the glass transition
temperature (T,) of the matrix but lower than the T, of the
minor blend component. The storage modulus of the
homogeneously mixed blends was greater than that of the
phase-separated blends at all shear frequencies simulated.
Analysis of various static and dynamics properties showed that
the origin of this behavior was the ability of the high-T, chains
to slow down the dynamics of the low-T, matrix chains due to
greater number of interactions between the two chain types in
the mixed state.

By investigating the role of the high-T, chain length and the
associated dynamics, it was determined that decreasing mobility
of the high-T, chains was the major factor determining the
degree of stiffening. With increasing high—Tg chain length, a
percolated high-T, chain network was formed in the
homogeneously mixed blend, whereas percolation was never
observed in the phase-separated blend. The highly connected
percolated network of high-T, chains led to a complete
immobilization of the high-T, polymer network, and no further
stiffening was observed with increasing high-T, chain length.

Interestingly, it was observed that even relatively short high-
T, chains (N, ~ 5-—10) were capable of significantly
immobilizing low-T, matrix chains. This finding indicates that
one can stiffen polymer melts with relatively small, but rigid
macromolecules.
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