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ABSTRACT 

 

Viscoelasticity, a ubiquitous material property, can be tuned to engineer a wide range 

of fascinating applications such as mechanical dampers, artificial tissues, functional foams 

and optoelectronics, among others. Traditionally, soft matter such as polymers and poly-

mer composites have been used extensively for viscoelastic damping applications, owing 

to the inherent viscous nature of interactions between polymer chains. Although this leads 

to good damping characteristics, the stiffness in these materials is low, which in turn leads 

to limitations. In this context, hard inorganic materials and composites are promising can-

didates for enhanced damping, owing to their large stiffness and, in some cases large loss 

modulus. Viscoelasticity in these materials has been relatively unexplored and atomistic 

mechanisms responsible for damping are not apparent. Therefore, the overarching goal of 

this work is to understand mechanisms for viscoelastic damping in various classes of in-

organic composites and alloys at an atomistic level from molecular dynamics simulations. 

 

We show that oscillatory shear deformation serves as a powerful probe to explain 

mechanisms for exceptional damping in hitherto unexplored systems. The first class of 

inorganic materials consists of crystalline phases of a stiff inclusion in a soft matrix. The 

two crystals within the composite, namely the soft and a stiff phase, individually show a 

highly elastic behavior and a very small loss modulus. On the other hand, a composite 

with the two phases is seen to exhibit damping that is about 20 times larger than predicted 

theoretical bounds. The primary reason for the damping is due to large anharmonicity in 

phonon-phonon coupling, resulting from the composite microstructure. A concomitant ef-

fect is the distribution of shear strain, which is observed to be highly inhomogeneous and 

mostly concentrated in the soft phase. Interestingly, the shear frequency at which the 

damping is greatest is observed to scale with the microstructural length-scale of the com-

posite. The second class of materials consist of structurally heterogeneous binary alloys 

that are either ordered, random or glassy. Vastly different mechanisms for viscoelastic 

damping arise for the three structures – random alloy and glass are observed to exhibit 

significant damping owing to large anharmonicity in the coupling between vibrational 

modes, which is a direct consequence of the chemical heterogeneity. Additionally, at low 
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shear frequencies, glass exhibits significant long-time scale structural relaxation that re-

sults in persistent damping over a large range of frequencies. Finally, a critical analysis of 

various factors that affect damping in inorganic glasses is made. We show that damping 

in glasses exhibits a striking commonality – at high frequencies, vibrational anharmonicity 

leads to a peak in damping for all glasses commensurate with the range of vibrational 

frequencies of the glass; at intermediate and low frequencies, structural relaxation leads 

to persistent, nearly-constant damping.  

The frequency-dependent damping mechanisms and structure-property relations ob-

served with respect to damping are expected to enable the design of novel structures with 

favorable damping characteristics.  
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1. Introduction 

 

The field of viscoelasticity has its origin in the development of the theory of elasticity 

propounded by Robert Hooke in the late 17th century and the study of shear forces in liq-

uids by Newton published in his work Principia back in 1687 [1]. The term viscoelastic 

is a portmanteau of “viscous” and “elastic” meaning a material, under some form of de-

formation exhibits both viscous character that contributes to a “lossy” behavior, 

dissipating energy and an elastic character that stores energy as recoverable elastic energy.  

Viscoelasticity, or rheology, of soft matter has been studied extensively for many 

decades [2]–[5]. Although these materials are inherently highly viscous in nature, the ever-

growing need for high-performance materials for viscoelastic damping applications has 

mandated the use of hard inorganic solids which simultaneously show significant viscous 

and elastic character. The focus of this thesis is to establish structure-property relations 

and atomistic mechanisms for damping in various hard inorganic materials using molecu-

lar dynamics shear simulations. This knowledge is expected to pave the way for 

engineering novel materials with optimum damping characteristics. 

This introductory chapter is organized as follows. In Section. 1.1, an overview of 

various characteristics of viscoelasticity is presented. In Sec. 1.2, traditional models to 

describe viscoelasticity are discussed briefly. Characterizing the frequency-dependent loss 

modulus, the most direct metric for damping is discussed in Sec. 1.3. In Sec. 1.4, several 

perspectives on damping in soft and hard materials is presented. Finally, Sec. 1.5 discusses 

the primary objectives of this thesis.  

 

1.1 Characteristics of viscoelasticity 

 

Three common phenomena are typically ascribed to viscoelastic behavior: (a) creep, 

(b) stress relaxation and (c) dynamic (cyclic) dissipative deformation. Creep leads to an  

 

 

Portions of this chapter previously appeared as: (a) R. Ranganathan, R. Ozisik and P. Keblinski, “Viscoe-

lastic damping in crystalline composites: A molecular dynamics study”, Composites Part B 93, 273 (2016), 

and (b) R. Ranganathan, Y. Shi and P. Keblinski, “Commonalities in frequency-dependent viscoelastic 

damping in glasses”, unpublished. 
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increase in the strain in the system as a function of time, at constant applied stress. Stress 

relaxation involves a continuous decrease in stress when the material is held at constant 

strain. The third phenomenon, namely dynamic or cyclic loading, leads to the damping 

phenomenon that is the focus of this work. 

Viscoelastic materials, when deformed cyclically, lead to a hysteresis between the 

stress and strain, as opposed to an ideal elastic material, where this is absent (see Figure 

1.1). The area under the stress-strain curve corresponds to the total energy that is dissipated 

as heat. This “lossy” or dissipative behavior exhibited by the viscous component of the 

material is an important property responsible for mechanical damping in a vast number of 

applications. Viscoelasticity can be exploited to synthesize materials with exceptional 

damping properties. Notably, polymer composites have been designed for damping and 

noise reduction in automobiles and airplanes [6], conferring structural stability during 

wind and earthquake induced vibrations [7], and mechanical damping in a number of ap-

plications [8]–[12]. Versatility in tuning viscoelastic properties from a purely viscous to a 

purely elastic behavior has enabled a wide range of engineering applications such as arti-

ficial tissues [13], functional foams [14], optoelectronics [15] among a slew of structural 

and mechanical applications [16]. 

 

 

 

 

Figure 1.1: Schematic for stress (σ) – strain (ε) relation under the application of cyclic deformation 

for (a) ideal elastic material and (b) viscoelastic material exhibiting hysteresis. 
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1.2 Traditional spring-dashpot models for viscoelasticity 

 

The earliest conceptual models for simplistic explanation of the elastic and viscous 

components contributing to viscoelasticity include arrangements of springs and dashpots 

in various configurations to mimic the elastic and viscous response respectively. Common 

arrangements are shown schematically in Figure 1.2  and include the Maxwell model 

(spring and dashpot in series), the Kelvin-Voigt model (spring and dashpot arranged in 

parallel) and the standard linear solid model (spring in parallel with the Maxwell element) 

[17]. These models are useful for qualitatively understanding viscoelastic phenomena such 

as stress-relaxation (Maxwell model), creep (Kelvin-Voigt model) or a combination of the 

two (standard linear model). Time-dependent stress-strain relations can be written by con-

sidering the distribution of stress and strain within the elements and with appropriate initial 

conditions. A large number of linear combinations of these elements can be considered in 

various configurations, as has been done in many studies to explain experimental data 

[18], [19]. However, these models cannot be used beyond their pedagogical relevance for 

atomistic mechanisms responsible for damping in complex materials; one has to use 

higher-level theories for the same. 

 

 

 

 

Figure 1.2: Spring-dashpot models for viscoelasticity. (a) Maxwell model, (b) Kelvin-Voigt model 

and (c) standard linear solid model.  
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1.3 Frequency-dependent dynamic moduli  

 

The most common metric for characterizing viscoelastic damping in a material is the 

dynamic shear modulus (𝐺∗). This is quantified by considering an oscillatory shear defor-

mation where both shear strain (γ) with the shear stress (𝜏) vary sinusoidally and where 

the stress lags the strain by a phase difference (𝛿).  𝐺∗ is then expressed as the complex 

sum of the “storage” and “loss” moduli, according to Eqn. (1.1).  

            𝐺∗  = 𝐺 cos(𝛿) + 𝑖𝐺 sin(𝛿)                                          (1.1) 

The quantity 𝐺 here, represents the ratio of peak shear stress to strain. The storage 

modulus (𝐺′ =  𝐺 cos(𝛿)) is the elastic component of the deformation that stores the re-

coverable elastic energy. The loss modulus (𝐺′′ =  𝐺 sin(𝛿)), on the other hand 

corresponds to the viscous component of the modulus that leads to lossy behavior that 

typically manifests as heat dissipation during deformation. Another quantity relevant for 

damping is the so-called loss tangent, 𝑡𝑎𝑛(𝛿) which is nothing but the ratio of loss to 

storage modulus. Both loss modulus and loss tangent represent the extent of damping in 

the material.  

An important characteristic of the complex modulus is that it is strongly dependent 

on the rate of deformation (or, as in the case of oscillatory shear deformation, on the shear 

frequency). This frequency (or time) dependence is a consequence of the inherent viscous 

character of the material. A typical dependence of storage and loss modulus and loss tan-

gent on the shear frequency is depicted in Figure 1.3. 

This general frequency-dependent damping could be understood as follows. At very 

low frequencies, the deformation rate is low enough that stress can keep up with the driv-

ing strain or vice-versa, with the result that 𝛿 tends to zero and so do the loss tangent and 

loss modulus. Storage modulus on the other hand is finite owing to the small stress sup-

ported by the material. On the opposite spectrum of frequency, in the high-frequency limit, 

the deformation rate is so high that the material essentially behaves like a highly elastic 

glassy solid. This again, results in negligible 𝛿, but the storage modulus increases drasti-

cally due to highly elastic behavior that supports large stresses. At intermediate 



 

     5 

frequencies however, a characteristic peak in the loss tangent and loss modulus is ob-

served. The reason for this is that, at these frequencies, the driving frequency is similar in 

magnitude to the frequency of the dissipative mechanism, leading to activation of the dis-

sipative mechanism. For instance, a few mechanisms for dissipation include relaxation of 

chain segments in the case of polymers [20] or frequencies corresponding to phonon re-

laxation times at THz frequencies [21] in solids.  

 

 

 

Figure 1.3: Schematic for variation of viscoelastic characteristics (storage modulus (𝑮′), loss modu-

lus (𝑮′′) and tan δ with respect to shear frequency (ω)). Figure adapted from Ref.  [22]. 

 

1.4 Viscoelastic damping in materials: some perspectives 

 

A large body of work exists in the study of viscoelasticity of soft matter. The promise 

of polymer-based materials as materials suitable for significant viscosity has been well-

recognized over the years and rheological studies on polymers have had a long history. 

Experimental characterization of viscoelasticity has seen numerous advancements with 

initial rheometers [23] coming a long way to state-of-the-art dynamic mechanical analysis 

equipment enabling accurate stress-strain measurements over multiple decades in fre-

quency [24], [25]. Several complex phenomena that affect damping, including the effect 
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of semicrystallinity, effect of temperature all the way up to glass transition and micro-

structural features in polymer nanocomposites have been studied [5], [18], [26], [27]. 

Closely following experimental studies are several theoretical works in this field [20], 

[28]–[30]. 

The promise shown by soft matter is their inherently large loss tangent (𝑡𝑎𝑛(𝛿)) val-

ues arising from the highly viscous nature of interaction between polymer chains. 

However, if one were interested in obtaining large damping properties (large loss moduli), 

equally important is the stiffness of the material (note that loss is contributed by the prod-

uct of shear modulus and the sine of 𝛿). In fact, if one were to plot the stiffness as a 

function of 𝑡𝑎𝑛(𝛿) for various materials as shown in Figure 1.4 (here, Young’s modulus, 

E is proportional to the shear modulus), we observe that traditional high-strength materials 

such as metals and alloys such as steel exhibit large stiffness, but low 𝑡𝑎𝑛(𝛿). On the other 

hand, soft materials such as polymers show the opposite trend. To enhance damping, ma-

terials that simultaneously exhibit large stiffness and large 𝑡𝑎𝑛(𝛿) are required, as 

observed for certain hard, composite materials in the upper right corner of Figure 1.4.  

 

 

 

Figure 1.4: Comparison of stiffness (Young’s Modulus, E) and tan δ for a wide range of materials 

with contrasting properties. Damping is maximized for materials with higher stiffness and higher 

tan δ as shown in top right corner for certain hard materials. Figure adapted from Ref. [31].  
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1.4.1 Damping in hard materials 

 

Hard inorganic solids with high stiffness and potentially high loss tangent are ideal 

materials for damping applications and have only recently seen significant developments. 

A brief review of candidate materials that exhibit large damping is presented here. 

Ma et al. [32] studied damping in multicomponent AlCoCrFeNi high entropy alloys 

and demonstrated significantly increased damping with increasing Al content. Schaller 

[12] studied the loss behavior in Mg-Si metal matrix composites and observed large vis-

cous damping arising from successive pinning and unpinning of dislocations during cyclic 

shear loading. Muthusamy et al. [33] reported exceptional damping properties in cement-

matrix graphite network composite with the loss factor approaching 0.8. Srikanth et al. 

[34] showed that by progressively adding more and more copper to a magnesium alloy, 

the damping capacity could be enhanced by about 100%.  

Ferroelectrics are another class of materials that demonstrate high loss moduli arising 

from switching of domains in the presence of oscillating electric fields [35]. It has also 

been shown that presence of a negative stiffness phase (those that are pre-constrained by 

residual forces) in composites can give rise to very high damping [36]–[38] with a loss 

factor on the order of 1 to 4. However, these materials require a positive stiffness phase to 

maintain mechanical integrity. 

In the context of damping in these hard materials, an important aspect is the ubiqui-

tous frequency-dependence. Widely different mechanisms could potentially be at play 

with respect to the driving frequency. In glasses for instance, low-frequency deformation 

is known to result in long time-scale structural relaxation. Going up the frequency scale, 

devices such as micromechanical and nanomechanical resonators require large quality fac-

tors (low damping) [39]–[41], extending up to GHz frequencies. The upper end of 

frequency spectrum (THz range) is relevant for high-frequency damping properties in pho-

nonic interconnects [13], and attenuation of sound [42]–[44]. 

This thesis aims to address mechanisms for damping in a wide range of hard inorganic 

solids, as highlighted in the next section.  
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1.5 Objectives  

 

In this thesis, we seek to understand atomistic mechanisms for viscoelastic damping 

in a wide range of hard, inorganic solids. We use non-equilibrium molecular dynamics 

(MD) simulations to perform oscillatory shear deformation, and uncover novel frequency-

dependent mechanisms for damping. With a view to understanding structure-property re-

lations in these materials that has far-reaching implications in tuning the damping 

capacity, we address mechanisms of damping in three classes of inorganic solids: 

1. Crystalline composites: We construct crystalline composites composed of stiff, 

spherical crystalline inclusions embedded within a soft crystalline matrix. We describe the 

roles played by heterogeneous deformation, vibrational properties of the composite and 

microstructure on damping. We also draw parallels with damping characteristics in model 

superlattice structures. 

2. Ordered, random and glassy alloys: We explore the role played by structure on 

frequency-dependence of damping. Described by the same interaction parameters, these 

three structures represent stark contrast in structure and as we show, lead to distinct fre-

quency-dependent damping characteristics.  

3. Glasses: Glasses are structurally rich materials and their metastability leads to 

many interesting properties. Broadly speaking, since glasses have the common trait of lack 

of long-range order, we address the question: “does damping in glasses exhibit certain 

universal characteristics?” In addition, various factors that affect damping in glasses are 

explored. 

 The organization of this thesis is as follows. In chapter 2, we present a detailed over-

view on characterization of viscoelasticity via the application of oscillatory shear 

deformation including experimental techniques and the MD simulation methodology em-

ployed in this work. Chapters 3 to 5 deal with damping mechanisms in the three classes of 

inorganic solids described in the previous paragraph. Finally, we summarize our findings, 

highlight some perspectives and discuss scope for future work in chapter 6.  
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2. Characterizing viscoelasticity via oscillatory shear deformation: 

Overview of experiments and simulation methodology  

 

In this chapter, we present an overview of application of oscillatory shear deformation 

to characterize viscoelasticity. Experimental capabilities using oscillatory shear have ad-

vanced over the last several decades and serve as a power tool for characterizing 

viscoelasticity. Pertinent to this methodology is the direct analog of molecular-level sim-

ulations involving oscillatory shear. Specifically, advancement in both theory and 

computational speed have enabled molecular dynamics shear simulations to be used for 

simultaneously modeling viscoelastic properties and gather insights in to atomistic mech-

anisms for the observed properties. The chapter is organized as follows: Section. 2.1 gives 

an overview of experimental techniques for characterizing viscoelasticity. In Sec. 2.2, we 

describe the oscillatory shear deformation methodology used in this thesis. Finally, Sec.  

2.3 describes a few theoretical considerations relevant for this work.   

 

2.1 Dynamic Mechanical Analysis experiments 

 

Experimentally, the most powerful setup for measuring viscoelastic response is using 

the Dynamic Mechanical Analysis (DMA) technique. Oscillatory deformation, either in 

the form of a torque (imparting shear deformation) or axial forces is applied on the sample, 

following which stress-strain data are accumulated. The phase difference between the two 

characterizes the frequency dependent storage and loss moduli and the loss tangent. A 

schematic for a typical DMA setup is shown in Figure 2.1 [45]. The sample is placed in 

between two parallel plates through which an axial or torsional force is applied by means 

of a force motor. Stress and strain (or alternately, force and displacement) are typically 

measured using force transducers and optical encoders [45]. DMA became popular in the 

field of soft matter rheology [5], [23] and has been used extensively for a variety of poly-

mers and polymer composites [5], [26], [27], [45]. Routine applications of DMA include 

characterization of frequency and temperature dependence of elastic moduli both in linear 

and non-linear viscoelastic regimes [45].  
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Figure 2.1: Schematic of the Dynamic Mechanical Analyzer. Right panel shows schematic of phase 

lag between measured force and displacement (or alternately, between stress and strain) [45]. 

 

In the field of hard materials, a variation of the DMA setup is employed, where, in-

stead of application of forces via mechanical motors, electromagnetic impedance is used. 

Chen and Lakes [24] devised an experimental set up whereby an electromagnetic torque 

is applied to one end of the sample holder, that drives the oscillatory deformation. This 

technique and its variants have been used extensively to study viscoelastic damping in 

various hard alloys including tin-based alloys [46] [25], vanadium-tin composites [38] and 

ferroelectrics [35] over multiple decades in frequency.  

 

2.2 Simulation protocol: Atomistic mechanisms for viscoelasticity  

 

In this thesis, we use oscillatory shear deformation simulations under the purview of 

molecular dynamics (MD) to understand atomistic mechanisms for viscoelastic damping 

in hard inorganic materials. This technique is a direct analog of the experimental setup 

described in the previous section, and is explained in the following sections. A few theo-

retical considerations for our modeling protocol are also discussed in the next section. 
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2.2.1 Molecular dynamics simulations 

 

A Molecular dynamics (MD) simulation involves solving Newton’s equation of mo-

tion numerically, with forces between various particles (atoms/molecules) described by a 

well-defined force field [47]. MD is a very powerful technique for studying structure-

property relations in a wide range of materials and has been extensively used for modeling 

atomistic phenomena responsible for mechanical properties, heat transport, phase trans-

formations, among others [47], [48]. In particular, MD is well-suited for modeling 

mechanical properties under shear (which forms the basis of this work) and has been em-

ployed to study inorganic solids [49] and soft matter [20], [26].  

 

2.2.2 Oscillatory shear deformation 

 

Viscoelastic properties are studied using non-equilibrium oscillatory shear defor-

mation simulations. We apply a homogeneous, sinusoidal shear strain, 𝛾𝑥𝑦, with a shear 

frequency (f) to the cubic simulation cell as described in Eqn. (2.1): 

                                                      𝛾𝑥𝑦 =  𝛾𝑜 sin (2𝜋𝑓𝑡)                                                        (2.1) 

where 𝛾𝑥𝑦 refers to strain applied within the xz-plane along the x–axis in a right-

handed coordinate system, 𝛾𝑜 is the maximum shear strain imposed on the system and 𝑡 is 

time. A schematic for the shear deformation via tilting of the simulation cell is shown in 

Figure 2.2. Using the molecular-level virial formula [50], we then calculate the resulting 

shear stress, 𝜏𝑥𝑦. Note that during this shear deformation, the simulation box volume re-

mains constant while the shape of the simulation cell changes due to the applied shear 

strain. 
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Figure 2.2: Schematic showing deformation of a cubic box (initial) by the application of a shear strain. 

The magnitude of strain is 𝜸 =  ∆𝒙 𝒚⁄ . 

 

One expects 𝜏𝑥𝑦 to follow the same sinusoidal profile as 𝛾𝑥𝑦 and this is indeed seen 

to be the case in all our simulations. Therefore, the shear stress can be described by a 

sinusoidal function having a phase shift angle (𝛿) as described in Eqn. (2.2).  

                                                  𝜏𝑥𝑦 =  𝜏𝑜 sin (2𝜋𝑓𝑡 + 𝛿)                                            (2.2) 

The phase angle (𝛿) is a measure of the viscoelasticity of the material. Purely elastic 

materials have 𝛿 = 0º and purely viscous materials have 𝛿 = 90º. In the current simulations, 

we accumulate 𝜏𝑥𝑦 over multiple shear cycles to calculate the peak value of shear modulus 

(𝐺), which is defined as the ratio of the maximum shear stress (𝜏𝑥𝑦,𝑚𝑎𝑥) and the maximum 

shear strain (𝛾𝑥𝑦,𝑚𝑎𝑥). The complex shear modulus (𝐺∗) is then expressed as the complex 

sum of the storage (𝐺′ =  𝐺 cos(𝛿)) and loss (𝐺′′ =  𝐺 sin(𝛿)) moduli as per Eqn. (2.3). 

                               𝐺∗  = 𝐺 cos(𝛿) + 𝑖𝐺 sin(𝛿);   𝑤ℎ𝑒𝑟𝑒,   𝐺 =   
𝜏𝑥𝑦,𝑚𝑎𝑥

𝛾𝑥𝑦,𝑚𝑎𝑥
                        (2.3) 

Figure 2.3 shows the above procedure in a simple flowchart. The loss modulus gov-

erns the extent of mechanical damping under the given conditions (material properties, 

deformation conditions) and is used synonymously with damping throughout this work.  

 

 

Figure 2.3: Flowchart for computing the complex shear modulus from the stress-strain profile 
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We study viscoelasticity in a range of hard inorganic materials, with different inter-

action energies between constituent atom types. These would be described in the specific 

sections that explore damping for these cases (Chapters 3 to 5). Here, as an example for 

stress-strain relations, Figure 2.4 shows averaged shear stress and strain profiles for a spe-

cific case of a crystalline composite system (composed of a stiff inclusion in a soft matrix, 

as shown in the inset). The shear frequency is f = 0.2 ps–1. As seen from the figure, the 

significant phase shift of δ = 22o results in an appreciable loss modulus, 𝐺′′ = 1567 MPa.  

 

 

 

Figure 2.4: Sample result for relation between applied shear strain (shown by blue circles) and the 

resultant shear stress (green) during oscillatory shear deformation of a crystalline composite (shown 

in inset). Stress data have been averaged over 5 shear cycles.  

 

2.2.3 Simulation details 

 

Oscillatory shear deformation simulations are performed for a wide range of inorganic 

solids including crystalline composites, ordered and random alloys and various glasses. 

For each case, the force field used for the model and simulation conditions are presented 

in the respective chapters (chapters 3 to 5). Starting from well-equilibrated structures at 



 

     14 

zero external pressure and temperature well below the melting point/glass transition tem-

perature, shear deformation is carried out under the constant volume-constant energy 

(NVE) ensemble. This allows us to measure the energy dissipated during shear directly 

(refer to Sec. 2.3.2 below). Frequency-dependent loss moduli are computed over a wide 

range of frequencies (spanning 3 to 5 decades) ranging from MHz to THz. Stress-strain 

data are typically averaged over 5 cycles of oscillatory shear. Additionally, we also con-

sider shear under constant volume-constant temperature (NVT) conditions for shear 

deformation of glasses, where we are interested in capturing long time-scale structural 

evolution. The coupling to a thermostat to maintain constant temperature is necessary to 

avoid unreasonable temperature rise at high frequencies, where we accumulate stress-

strain data over 100,000 cycles (chapter 5). All MD simulations have been carried out 

using the LAMMPS simulation package [51].  

 

2.3 Theoretical considerations 

 

2.3.1 High-frequency damping: role of vibrational modes 

 

Typically, experimental studies of viscoelasticity probe dynamic moduli over fre-

quencies ranging from few thousandths of Hz to few KHz [46]. Computer simulations are 

inherently limited by the extent of time-scales that can be simulated, and currently can 

probe frequencies only down to a few MHz for reasonably large systems. On the upper 

limit of frequencies, MD simulations are ideally suited for THz frequencies. We note that 

the range of shear frequencies simulated in this work is from 10s of MHz to 10s of THz. 

In the THz range, the dominant mechanism for viscoelastic damping in hard materials 

arises from anharmonic coupling of vibrational modes as will be described in detail in 

Chapters 3 to 5. To the best of our knowledge, this thesis is the first study to uncover this 

mechanism for a range of hard inorganic materials using MD simulations.  



 

     15 

Vibrational eigenstates of the system were computed by the well-known method of 

diagonalization of the dynamical matrix [52], [53], with the normal mode solution [54] of 

the form:  

                                                               𝑢𝑗𝛼𝜆 =  
1

√𝑚𝑗
 𝜀𝑗𝛼𝜆  𝑒𝑖𝜔𝜆𝑡                                                               (2.4)                                              

Here, mj is the mass of atom j and ωλ are the eigen frequencies. The eigenvector compo-

nents, εjaλ satisfy the following eigenvalue equation: 

                                               𝜔𝜆
2 𝜀𝑗𝛼𝜆 =  ∑ 𝛷𝑗𝛼,𝑘𝛽𝑘𝛽  𝜀𝑗𝛽,𝜆                                                                    (2.5)                                           

 The elements of the dynamical matrix, 𝛷𝑗𝛼,𝑘𝛽 within the harmonic approximation 

is given by: 

                                                 𝛷𝑗𝛼,𝑘𝛽 =  
1

√𝑚𝑗𝑚𝑘
 

𝜕2𝑉

𝜕𝑢𝑗𝛼𝜕𝑢𝑘𝛽
                                                             (2.6)                                     

where, ujα is the displacement of atom j in the α coordinate direction and V is the total 

potential energy. For structures considered in this work, vibrational frequencies were cal-

culated by the diagonalization of the dynamical matrix [55] using the Xenoview software 

[56]. 

 

2.3.2 Heat dissipation during shear  

 

It is well-known that during oscillatory shear deformation, the loss modulus compo-

nent manifests as heat dissipated to overcome the damping mechanism [5]. In polymers, 

for instance, the mechanism involves dissipation due to viscous forces between the poly-

mer chains [3], [5] and in hard materials, it could arise from local relaxation processes 

such as atomic diffusion and dislocation motion [16] or, at high shear frequencies ap-

proaching vibrational frequencies (order of few THz), it could arise from anharmonic 

coupling between vibrational modes [57]. 

In this section, we present a simple analytical approach to estimate the heat dissipated 

due to shear deformation based on deformation conditions and material properties. Using 

MD shear simulations, one can easily compute the increase in energy due to shear, under 
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NVE conditions. We corroborate the analytically computed heat dissipation with direct 

MD observation of energy increase and note that these values agree very well, with an 

error typically less than 5%.  

We begin by assuming the heat dissipated is solely due to the work done by the ap-

plied shear force. This is given as:  

                                          𝑊 =  ∫ 𝐹𝑥𝑦 . 𝑑𝑥                                                       (2.7) 

Noting that the shear force, 𝐹𝑥𝑦 is the product of shear stress (𝜎𝑥𝑦) and the area over 

which the force acts (Eqn. (2.8)) and the displacement 𝑥 and shear stress are sinusoidal 

with respect to time with a frequency, 𝑓 (the latter with a phase shift 𝛿 with respect to 

displacement) according to Eqn. (2.9), 

                                                         𝐹𝑥𝑦 =  𝜎𝑥𝑦 𝐴𝑥𝑦                                                     (2.8) 

  𝑥 = 𝑥𝑜𝑠𝑖𝑛 (𝑓𝑡); 𝜎𝑥𝑦 =  𝜎𝑜 𝑠𝑖𝑛 (𝑓𝑡 + 𝛿)                                                  (2.9) 

one obtains the work done over a single oscillatory cycle with time period, 𝑇𝑝 as per 

Eqn. (2.10): 

                                𝑊 =  𝜎𝑜 𝑥𝑜𝜔 𝐴𝑥𝑦 ∫ 𝑠𝑖 𝑛(𝑓𝑡 + 𝛿) 𝑐𝑜𝑠 (𝑓𝑡)
𝑇𝑝

0
 𝑑𝑡                                       (2.10) 

Extending this for 𝑁 cycles of shear and noting that 𝑓 = 2 ∗ 𝜋/𝑇𝑝, the integral can be 

simplified to yield the following equation: 

                                              𝑊 = 𝑁𝜋𝜎𝑜𝑥𝑜𝐴𝑥𝑦 𝑠𝑖𝑛 (𝛿)                                                                         (2.11) 

Here, both deformation conditions (𝜎𝑜 , 𝑥𝑜) and the material property (𝑠𝑖𝑛 (𝛿)) deter-

mine the extent of heat dissipated (or extent of damping). We observe a very good 

agreement between the predicted value as per Eqn. (2.11) and direct observation of heat 

dissipated from MD simulations, for the entire spectrum of frequency studied (over 3 to 5 

decades), for an extensive range of materials simulated (including hard composites and 

soft polymers and nanocomposites).  
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3. Viscoelastic damping in crystalline composites 

 

In this chapter, we present a detailed analysis of viscoelastic damping in crystalline 

composites consisting of soft and stiff phases. The organization of the chapter is as fol-

lows: Section 3.1 introduces several studies on damping in hard, inorganic solids and 

strategies to enhance damping. Description of model structures is presented in Sec. 3.2. 

The key results and discussion on damping in composites consisting of spherical inclu-

sions and superlattice structures are presented in Sec. 3.3.  Finally, Sec. 3.4 contains the 

summary and conclusions.  

 

3.1 Introduction 

 

Versatility in tuning viscoelastic properties from a purely viscous to a purely elastic 

behavior has enabled a wide range of engineering applications such as artificial tissues 

[13], functional foams [14], optoelectronics [15] among a slew of structural and mechan-

ical applications [16]. Viscoelasticity can be exploited to synthesize materials with 

exceptional damping properties. Notably, polymer composites have been designed for 

damping and noise reduction in automobiles and airplanes [6], conferring structural sta-

bility during wind and earthquake induced vibrations [7], and mechanical damping in a 

number of applications [8]–[12]. There exists a large body of work on experimental char-

acterization of damping and its dependence on various variables like temperature, 

microstructure and shear deformation frequency for polymer and fiber composites [11], 

[58]–[61]. 

Recently, viscoelasticity in crystalline materials such as metals and alloys has gar-

nered a lot of attention. The promise of these materials is to maintain high stiffness (high 

elastic modulus) while providing significant damping, i.e., relatively high loss modulus. 

For example, Ma et al. [32] studied damping in multicomponent AlCoCrFeNi high entropy 

alloys and demonstrated significantly increased damping with increasing Al content. 

 

Portions of this chapter previously appeared as: R. Ranganathan, R. Ozisik and P. Keblinski, “Viscoelastic 

damping in crystalline composites: A molecular dynamics study”, Composites Part B 93, 273 (2016). 
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Schaller [12] studied the loss behavior in Mg-Si metal matrix composites and ob-

served large viscous damping arising from successive pinning and unpinning of 

dislocations during cyclic shear loading. Muthusamy et al. [33] reported exceptional 

damping properties in cement-matrix graphite network composite with the loss factor ap-

proaching 0.8. Srikanth et al. [34] showed that by progressively adding more and more 

copper to a magnesium alloy, the damping capacity could be enhanced by about 100%.  

Ferroelectrics are another class of materials that demonstrate high loss moduli arising 

from switching of domains in the presence of oscillating electric fields [35]. It has also 

been shown that presence of a negative stiffness phase (those that are pre-constrained by 

residual forces) in composites can give rise to very high damping [36]–[38] with a loss 

factor on the order of 1 to 4. However, these materials require a positive stiffness phase to 

maintain mechanical integrity. 

A large body of theoretical work in predicting upper and lower bounds for elastic and 

shear moduli for materials has been performed over the years. These are either based on 

the well-known variational theory propounded by Hashin and Shtrikman [62], [63]; con-

tinuum based methods [64]–[66] or multiscale modeling [67]. Also popular are techniques 

that couple homogenization theory to obtain bounds for elastic moduli and a structural 

optimization algorithm to model microstructures with tunable properties [68]. While these 

methods are valuable predictive tools for estimating composite viscoelastic properties, a 

deeper understanding of the underlying mechanisms is possible only using molecular level 

simulations.  

Here, we employ non-equilibrium molecular dynamics shear simulations to study vis-

coelasticity of model crystalline composites with various microstructures as a function of 

shear rate. We limit ourselves to deformations where there are no defects such as disloca-

tions formed, thus, damping arises purely from the anharmonic coupling between 

vibrational modes.  
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3.2 Model structures and simulation details 

 

3.2.1 Model structures 

 
Our model composites comprise “stiff” spherical inclusions embedded within a “soft” 

matrix. Both phases are crystalline, in a face centered cubic (FCC) lattice, and are modeled 

by the standard 12-6 Lennard Jones pair potential:  

            𝐸 = 4𝜀 [(
𝜎

𝑟
)

12

−  (
𝜎

𝑟
)

6

]                                                  (3.1)        

where 𝜀 and 𝜎 are the energy and length scale parameters. For the soft phase,  𝜀 and 𝜎 are 

set as 0.01 eV and 3.405 Å, respectively, corresponding to parameters for FCC crystal of 

argon [69]. The 𝜀 for the stiff phase (denoted as atom type “A”) is increased by four times 

that of the soft phase (denoted as atom type “B”). The 𝜎 values are the same for both soft 

and stiff crystals rendering the interface between them epitaxial and resulting in very low 

residual stresses. A common cutoff of 10 Å is used for truncating the potential interaction. 

In addition to composites consisting of spherical inclusions of the stiff phase, we con-

sider superlattice structures composed of similar stiff and soft crystalline components. 

Figure 3.1 shows the atomic snapshots of the two types of crystalline composites consid-

ered – in panel (a) is a composite with spherical inclusion of stiff phase (with volume 

fraction ~0.4) and in (b) is a superlattice structure with a superlattice width of 21.5 Å.  

 

 
 

 

Figure 3.1: Snapshots of composite systems containing phases that have a stiffness contrast. (a) Spher-

ical inclusion of stiff phase. (b) Superlattice structure consisting of 5 layers of A-B superlattice layers. 

Red atoms correspond to the soft crystalline component and blue, to the stiff component. 
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Estimation of viscoelasticity from averaged stress-strain curves during oscillatory 

shear deformation is depicted in Figure 3.2. The oscillatory shear strain (𝛾𝑥𝑦) imposed on 

the system is shown in blue and the resulting shear stress (𝜏𝑥𝑦) is shown in green. The 

stress-strain data are averaged over 40 shear cycles and the time period of oscillations is 5 

ps (f = 0.2 ps–1). Panels (a), (b) and (c) in Figure 3.2 correspond to results obtained from 

homogeneous soft phase, a composite with volume fraction of stiff phase,  ~ 0.4 and, 

homogeneous stiff phase, respectively. The phase angle (𝛿) between stress and strain and 

the magnitude of shear modulus are also shown for all three cases. We observe that for 

homogeneous phases (both soft and stiff) as seen in Figure 3.2(a) and (c), 𝛿 is close to 

zero, resulting in a negligible loss modulus. On the other hand, the composite microstruc-

ture shows a large 𝛿 (~22º) leading to significant loss modulus. 

For all shear simulations, we first equilibrate the system at 40 K and zero pressure 

using a Nose-Hoover thermostat [70], [71] for 400 ps. The choice of temperature is to 

keep it well below the melting point of the soft phase (84 K) [72]. The damping time 

constants for the thermostat and barostat are 100 fs and 200 fs, respectively. This is fol-

lowed by further equilibration at constant volume and constant temperature (NVT) 

ensemble for 400 ps.  

The equilibrated structures are then subject to the oscillatory shear simulations at con-

stant volume and constant energy (NVE) ensemble to characterize viscoelasticity. The 

thermostat is removed during shear in order not to artificially remove the heat dissipated 

during shear. Additionally, this allows us to monitor the rise in the system temperature 

(and energy) during shear, and thus, we ensure that the shear cycles are terminated well 

below the melting point of the soft phase. We note that the crystallinity of the composite 

is maintained during both equilibration and cyclic shear deformation stages, which were 

confirmed by negligible variation in the pair distribution function between the relaxed and 

strained structures and the coordination of all atoms, which was found to be equal to 12 

(FCC). 

For all simulations, the stress profiles were averaged over 3 to 5 cycles, ensuring that 

the system temperature does not exceed ~45 K. The simulation box size (L) ranged from 

7 unit cells (~37 Å) to 25 unit cells (~133 Å) and the maximum shear strain imposed was 
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within 1.5%. All simulations were performed with the LAMMPS simulation package [51] 

with a timestep of 2 fs. Periodic boundary conditions were applied along all three axes. 

 

 

 

Figure 3.2: Estimation of viscoelasticity from averaged stress-strain curves during oscillatory shear 

deformation. Shear strain (γxy) is the input and shear stress (τxy) is the output. Panels (a) and (c) are 

for homogeneous soft and stiff phases respectively that exhibit negligible phase difference. Panel (b) 

is for a composite with the volume fraction of stiff phase, φ ~ 0.4, exhibiting significant phase shift and 

thus, a large loss modulus. Side views in panel (a) show the zero-strain and maximum strain 

configurations during the shear cycle. 



 

     22 

3.3 Results and discussion 

 

3.3.1 Vibrational analysis 

 

The viscoelastic properties of a material are likely to be dictated by its vibrational proper-

ties in our simulations, as no defect formation or bond breaking are observed. During the 

oscillatory shear deformation, the energy dissipation occurs via the anharmonic coupling 

between the various phonon modes. The degree of anharmonic coupling between the pho-

non modes determines the extent of viscoelastic loss in such material. A direct measure of 

this is the mode-dependent Grüneisen parameter, 𝛾 [73], defined by Eq. (3.2). 𝛾 relates the 

shift in individual phonon frequencies (𝜔𝑖) to infinitesimal changes in system volume, V. 

𝛾𝑖 =  −
𝑉

𝜔𝑖

𝜕𝜔𝑖

𝜕𝑉
         (3.2) 

where 𝛾𝑖 is the Grüneisen parameter of the ith phonon mode. A larger 𝛾 implies greater 

energy dissipation (loss) due to larger anharmonic coupling.  

We calculate 𝛾 for all the system frequencies using Eq. (3.2) upon deforming the 

simulation cell isotropically, during which the volume is changed by 1% about the equi-

librium volume. For each volume, the phonon frequencies were calculated by the 

diagonalization of a dynamical matrix [55] using the Xenoview software [56] (Refer to 

Sec. 2.3.1 for additional details on the calculation method). 

Shown in Figure 3.3 is the variation of 𝛾𝑖 for various composites ranging from  = 0 

(fully soft) to  = 1 (fully stiff) for L = 7 unit cells. The homogeneous soft phase ( = 0) 

shows a maximum 𝛾 of about 8 at the low frequency end (~0.2 THz). The pure stiff phase 

( = 1), has a maximum 𝛾 of about 5. The two intermediate volume fractions ( = 0.27 

and  = 0.47) exhibit much larger 𝛾 (for example, at  = 0.47, ~2 and ~3 times larger than 

homogeneous soft and stiff phases, respectively) at lower frequencies (< 1.6 THz), which 

is due to a large strain concentration in narrow regions of the soft phase. Interestingly, at 

higher frequencies (modes contributed by the stiff phase), 𝛾 is suppressed for the compo-

site, which is a consequence of the heterogeneity in deformation. 
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Figure 3.3: Variation of mode-dependent Grüneisen parameters for various composites, ranging from 

φ = 0 (fully soft) to φ = 1 (fully stiff) for a system size of L = 7 unit cells. 

 

3.3.2 Local strain distribution 

 

To quantify local deformation during shearing in our model composites, local shear 

strains were calculated along the radial direction, starting at the center of the stiff inclu-

sion. We consider deformation over one quarter of shear cycle (until maximum shear strain 

is reached) for a total 𝛾𝑥𝑦 = 0.025 with a shear strain rate of 1x10-3/ps. Shown in Figure 

3.4 are the radial shear strain profiles for stiff and soft phases during shear for L = 25 and 

 = 0.4. A spherical bin width of 5.3 Å was used in the calculations and the radial distance 

was normalized by the length of the simulation cell. The shear strain data are also tempo-

rally averaged over a small time window (1.6 ps) for good statistics. The local 𝛾𝑥𝑦 values 

are computed by dividing the shear modulus of the homogeneous phase by the accumu-

lated shear stress (𝜏𝑥𝑦) within a bin, which is further normalized by the overall shear strain. 

Strain distributions for both the undeformed, “relaxed” state and the fully deformed, 

“strained” states for the stiff and soft phases are shown in the figure. As seen from Figure 

3.4, the soft phase is seen to experience a much larger shear strain (2 to 10 times greater) 

compared to the stiff phase. In addition, 𝛾𝑥𝑦 in the soft phase increases monotonically with 
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radial distance with the least strain present at the epitaxial interface. Confinement of a 

softer phase in a composite can thus potentially result in significant viscous damping via 

large local deformation. 

 

 

 

Figure 3.4: Spatial strain profiles for both the soft and stiff phases during one-quarter cycle of shear 

(till maximum amplitude in sinusoidal shear is reached). System size is L = 25 unit cells. The soft 

phase undergoes shear strains much larger than the stiff phase. 

 

3.3.3 Role of composite microstructure and shear frequency on damping 

 

Viscous damping in materials is a complex phenomenon that depends on various fac-

tors. Among the most important are the structure of the material (i.e., the microstructure 

of crystalline composites) and the shear frequency. In this section, we study the effect of 

two important contributing factors to viscoelastic damping in composites, namely, the 

composite microstructure and shear frequency. The microstructural effect is studied in two 

ways. First, we fix the overall simulation cell size and vary the volume fraction of the stiff 

inclusion (denoted as “volume-fraction-sweep”). We then study the effect of shear fre-

quency (denoted as “frequency-sweep”) for various microstructural features. Here, the 

second kind of microstructural effect is realized by keeping the volume fraction of the 
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spherical inclusion fixed while varying the overall simulation cell size. Coupled with this 

are possible size effects that are also addressed. 

At the nanoscale, microstructure is expected to play a very important role in damping 

due to a large interfacial effect. To understand the effect of microstructure on damping 

properties of crystalline composites, various simulations were performed where the vol-

ume fraction of the stiff phase () is varied from 0 to 1 (“volume-fraction-sweep”) while 

keeping the shear rate constant. It is also well known that viscous damping in materials is 

strongly affected by the shear rate [22]. At high shear rates, materials cannot respond to 

high rate of deformation, and consequently, behave like a glass with a high storage mod-

ulus and low viscous loss. In the low frequency regime, there is sufficient time for material 

to respond to shear deformation, which leads to elastic-like behavior and low viscous 

losses.  

 

3.3.3.1 Effect of inclusion volume fraction 

 

We study a range of microstructures by varying the volume fraction () of the stiff 

inclusion. Shown in Figure 3.5 are the results for volume-fraction-sweep simulations for a 

fixed simulation box size of L = 7 and at a constant shear frequency of 0.33 THz. Two 

possible arrangements of component phases were considered: (a) the inclusion being the 

stiff phase (shown by red circles) and (b) the inclusion being the soft phase (shown by 

green triangles). We observe that the loss modulus is close to zero for homogeneous com-

positions ( = 0 and  = 1). At intermediate fractions of the stiff phase (0.2 < stiff < 0.6), 

there is significant viscoelastic damping and the maximum loss modulus of ~1500 MPa is 

approximately 25 times larger than that of the homogeneous soft phase. The loss modulus 

profiles of the two cases (soft versus stiff inclusion) are slightly different – the stiff inclu-

sion case shows slightly enhanced damping. We suppose that this is due to the soft matrix 

experiencing the majority of the deformation and not transferring much of the deformation 

to the stiff inclusion. 
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Figure 3.5: Volume-fraction-sweep simulations showing variation of loss modulus as a function of 

volume fraction of the spherical inclusion. The two sets of data represent the arrangement of the 

phases (the inclusion being either soft or stiff). The shear frequency is fixed at 0.33 THz. 

 

3.3.3.2 Comparison with theoretical bounds for elastic moduli 

 

Theories for several bounds for elastic moduli of composites exist in literature. 

Among these, the variational principle proposed by Hashin and Shtrikman [63] for elastic 

constants of composites has been used extensively for estimating the upper and lower 

bounds for the effective elastic moduli. These bounds (for bulk or shear modulus) of com-

posites are described in terms of the volume fraction of individual phases and their 

respective elastic constants. By applying variational principles on the elastic polarization 

tensor, this formulation provides strict upper and lower bounds of the moduli attainable 

for any arbitrary phase geometry. For shear modulus, the bounds are given in terms of the 

volume fractions () and the bulk (𝐾) and shear moduli (𝐺) of the two phases (indicated 

with subscripts “1” and “2”) as follows: 

        𝐺𝐿 = 𝐺2 +
𝑣1

1

𝐺1− 𝐺2
+ 

6(𝐾2+2𝐺2)2
5(3𝐾2+ 4𝐺2)𝐺2

                                        (3.3) 

                                            𝐺𝑈 = 𝐺1 +
𝑣2

1

𝐺2− 𝐺1
+ 

6(𝐾1+2𝐺1)1
5(3𝐾1+ 4𝐺1)𝐺1

         (3.4) 
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where, the individual shear and bulk moduli, and the resultant upper and lower bounds 

for loss shear modulus are all complex quantities. We estimate these bounds for our model 

composites, where the phases 1 and 2 stand for homogeneous stiff and soft phases, respec-

tively. The complex shear moduli for homogeneous phases are obtained directly from our 

shear simulations. The bulk moduli for the homogeneous phases were calculated by the 

formula 𝐾 =  −𝑉 ∗ 𝑑𝑃 𝑑𝑉⁄  upon small changes in volume and measuring the resulting 

total system pressure. We assume the same phase shift values (𝛿) for the bulk moduli as 

for the shear moduli. 

Shown in Figure 3.6 is the comparison of loss modulus (𝐺′′) calculated from MD 

simulations as a function of volume fraction of the stiff phase, with the upper (𝐺𝑈
′′) and 

lower (𝐺𝐿
′′) bounds from Hashin-Shtrikman variational theory for a system with L = 7 and 

f = 0.33 THz. As seen from the figure, the maximum in the 𝐺′′ values calculated from 

simulations is 20 times greater than the analytical upper bound predicted by the theory. 

Thus, at the nanoscale, we observe that huge strain concentrations in the soft phase can 

lead to loss moduli far greater than that predicted by macroscopic viscoelasticity theory. 

The Hashin-Shtrikman theory assumes homogeneous deformation of component 

phases in a composite, and as a consequence, predicts the composite moduli bound by the 

inherent moduli of the component phases. In our model composites however, the selective 

deformation of the soft phase along with large Grüneisen parameters (as discussed in Sec 

3.3.1) is responsible for this enhanced damping.  
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Figure 3.6: Comparison of loss modulus (𝑮′′) calculated from MD simulations for LJ composite with 

the upper (𝑮𝑼
′′) and lower (𝑮𝑳

′′) bounds from Hashin-Shtrikman theory. System size is L = 7 unit cells 

and shear frequency is f = 0.33 THz. The microstructure at maximum damping volume fraction is 

shown in inset. 

 

3.3.3.3 Effect of inclusion stiffness 

 

The stiffness of the inclusion phase should have a significant effect on damping; the 

bigger the contrast between the phases, the greater is the strain accommodated by the softer 

phase (the matrix). This is clearly seen in our simulations and is depicted Figure 3.7 for a 

composite with  = 0.5 and L = 7 at a shear frequency of 0.4 THz, which corresponds to 

the frequency of maximum loss modulus for this system. The relative stiffness (εrel) is 

represented as the ratio of εstiff to εsoft. For a relative stiffness of one (homogeneous soft 

phase), we recover the negligible damping behavior of the homogeneous soft phase noted 

earlier in Figure 3.5. Loss modulus increases almost linearly with relative stiffness in the 

εrel range of 2 to 4 and begins to saturate for εrel > 5. 
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Figure 3.7: Variation of loss modulus with stiffness of the stiff phase. The relative stiffness is repre-

sented as the ratio of εstiff  to εsoft. 

 

3.3.3.4 Effects of microstructure and simulation cell size 

 

In this section, we first consider the possible size effect from the choice of simulation 

cell size on damping. Frequency-sweep simulations were performed for a composite with 

 = 0.5 for three different structures. The first structure comprises of a single spherical 

inclusion with L = 7 unit cells. The other two structures are obtained by replicating the 

base structure (L = 7) two and three times in each axis to yield structures with L = 14 and 

L = 21 unit cells. These structures have eight and twenty-seven times the volume (and also 

number of inclusions) of the base structure respectively. Thus, here we merely study the 

effect of simulation cell size on damping, while preserving the same microstructure in all 

three structures. Shown in Figure 3.8 are the results of the frequency-sweep simulations 

for the three microstructures, with the maximum shear strain fixed at 1.5% for all cases. 

As seen from the figure, at either end of the shear frequency spectrum (low frequency end 

at f ~ 0.01 THz and the high frequency end at f ~ 2 THz), the loss modulus is negligibly 

small. At intermediate frequencies (0.3 < f < 1.5 THz), a large loss modulus results. This 

is because, at low frequencies, the system has ample time for the shear stress to respond 

to the strain. On the other hand, at high frequencies, the system is forced to follow the 
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extremely fast deformation, akin to a glassy behavior. For either case, the phase angle is 

close to zero. At intermediate shear frequencies that correspond to high Grüneisen param-

eters (refer to Figure 3.3), we observe significant damping, with the peak modulus value 

typically two orders of magnitude greater than that observed at the lowest frequency (0.01 

THz). Thus, damping is greatly enhanced for composites near shear frequencies that cor-

respond to the vibrational frequencies of the composite (as depicted earlier in Figure 3.3). 

Since we observe almost identical results for all three cases (which have identical micro-

structures), we conclude that there are no artifacts from the choice of the simulation cell 

size used in this work.  

 

 

 

Figure 3.8: Frequency-sweep simulations for composite with volume fraction of stiff phase, φ ~ 0.5 for 

the base composite of size L = 7 unit cells (red circles) and the base structure replicated twice (L = 14 

unit cells) and thrice (L = 21 unit cells) along x, y and z axes (green triangles). The atomic snapshots 

for these structures are shown as insets. 

 

Next, we explore the microstructural size effect by varying the simulation cell size 

while keeping the volume fraction of the stiff phase () fixed. Shown in Figure 3.9(a) are 

the results of the frequency-sweep simulations depicting the variation of loss modulus with 
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frequency for various system sizes containing L = 7, 10, 14, 20 and 25 unit cells in each 

direction at  = 0.48. The maximum shear strain is fixed at 1.5% for all cases. The homo-

geneous phases (soft,  = 0; and stiff,  = 1), which exhibit negligible loss moduli at all 

frequencies, are shown for comparison. As seen from the figure, increasing system size 

results in the maximum 𝐺′′ versus frequency curve to shift to lower frequency. Interest-

ingly, the frequency at which loss modulus shows a peak, when plotted against the inverse 

of simulation cell length gives rise to a straight line with a positive slope of about 1475 

m/s as shown in Figure 3.9(b). This value should be related to the speed of sound wave 

(𝑐′) due to propagation of shear waves in the composite. The speed of sound due to shear 

in the composite with  = 0.48 was also computed from MD determined elastic properties 

using the relation 𝑐 =  √𝐺 𝜌⁄  [74] was found to be 1270.1 m/s.  

 

 

 

Figure 3.9: (a) Frequency-sweep simulations depicting variation of loss modulus with frequency for 

various system sizes from L = 7 unit cells to L = 25 unit cells, with the volume fraction of stiff phase, 

φ ~ 0.48. The homogeneous phases (φ = 0 and φ = 1) which exhibit negligible loss moduli are also 

shown for comparison. (b) Variation of peak loss frequency with inverse of simulation cell length as 

outlined in panel (a). 

 

The similar values of the speed of sound and the slope calculated from maximum 

damping frequency versus inverse size suggests that the maximum damping corresponds 

approximately to the frequency of the largest wavelength sound wave representing micro-

structure periodicity. 
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3.3.4 Viscoelastic damping in crystalline superlattice structures 

 

Superlattice or laminated structures, where usually two dissimilar materials with dif-

ferent mechanical properties are sandwiched together, lead to many interesting properties 

[75]. Skirlo et al. [76] studied viscoelasticity in model Cu-Nb superlattice structures with 

stepped interfaces and found that the interfacial shear modulus increases monotonically 

with the step density. With this motivation, we also explore damping in superlattice with 

alternate layers of the two components (soft and stiff) having the same thickness and equal 

volume fractions. Akin to our analysis with regards to the size and shear frequency effects 

on damping in spherical inclusion composites, we observe that superlattice structures ex-

hibit a similar damping behavior. Figure 3.10(a) shows the frequency-sweep simulations 

for superlattice structures with varying sizes, plotted as a function of superlattice period. 

The sizes are such that the period of the superlattice feature (width of one layer of soft and 

stiff phase) is varied from L = 4 unit cells (10.8 Å) to L = 24 unit cells (64.5 Å). A snapshot 

of the superlattice structure with a period of 8 unit cells (21.5 Å) is shown in the inset.  

 

 

 

Figure 3.10: (a) Frequency-sweep simulations for superlattice structures composed of soft and stiff 

phases, for various widths of the superlattice spacing. (b) Variation of the two peak loss frequencies 

(the high and low-frequency peaks) as obtained in panel (a), with inverse of superlattice width. 
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As observed for the spherical inclusion composites, superlattice structures are also 

observed to exhibit high loss moduli at intermediate frequencies. Interestingly, we observe 

two pronounced peaks in the loss moduli for all sizes. We denote these as the “high-fre-

quency” and “low-frequency” peaks just based on the frequency position. Two trends are 

clearly evident with respect to this characteristic damping. Firstly, as the superlattice pe-

riod decreases, the low-frequency peak intensity decreases and the high-frequency peak 

increases. For the smallest structure (with a period of 4 unit cells), the low-frequency peak 

appears as a mere shoulder. This clearly shows that the low-frequency peak originates 

from the layering in superlattice, which disappears as the superlattice period diminishes 

(becomes more homogeneous). We suppose this is because of greater strains undergone 

by the soft phase when the superlattice period increases.  

Secondly, one can observe the characteristic size-dependence for damping, in the 

sense that larger sizes shift the damping frequencies to lower values. We observe that both 

the high- and low-frequency peaks show this behavior. Figure 3.10(b) shows the variation 

of these two peak frequencies as a function of inverse superlattice width. We observe that 

the high-frequency peak has a slope of 3533.8 m/s, which is ~1.4 times larger than that of 

the low-frequency peak. It is possible that the two peaks relate to longitudinal and trans-

verse vibrational modes characterized by the difference in speed of sound.  

 

3.4 Summary and conclusions 

 

Using non-equilibrium molecular dynamics shear simulations, we demonstrate high 

viscoelastic damping (manifested as large loss modulus, 𝐺′′) in model crystalline compo-

sites with spherical inclusion of a stiff phase embedded in a softer matrix. These high 

losses are realized only for intermediate volume fractions () of the stiff phase (0.2 < stiff 

< 0.6) and at intermediate shear frequencies (0.3 < f < 1.5 THz) which are seen to overlap 

with the range of system frequencies. 

 In summary, we find that: 

1. Viscoelastic damping has a strong dependence on the microstructure of the com-

posite with homogeneous phases (purely soft or purely stiff) exhibiting negligibly small 
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loss moduli and intermediate volume fractions of the stiff phase exhibiting up to 25 times 

larger loss moduli than the homogeneous soft phase. 

2. Viscoelastic damping in composites exhibits a strong shear frequency dependence. 

At intermediate shear frequencies, the loss modulus can increase by about two orders of 

magnitude. Closely associated with this frequency-dependence is the size-dependence of 

loss moduli. We observe that for a fixed volume fraction of the stiff phase, larger simula-

tion cell lengths result in a linear reduction of frequency at which the peak loss modulus 

occurs. 

3. We attribute the large loss moduli in composites to selectively large deformation 

of the soft phase. At intermediate volume fractions of the stiff phase, we observe confine-

ment of large shear strains in the soft phase, resulting in mode-dependent Grüneisen 

parameters that are about 2 to 3 times larger than for homogenous soft and stiff phases 

respectively. The loss moduli can be up to 20 times larger than analytical upper bounds 

predicted by the variational theory of Hashin and Shtrikman. 

4. We also observe high viscoelastic losses in model superlattice structures compris-

ing of soft and stiff crystalline components that are dependent on the shear frequency and 

the superlattice width. In particular, we observe two peaks in the loss moduli during fre-

quency-sweep simulations, with the low-frequency peak corresponding to the superlattice 

feature that diminishes as the superlattice width decreases (becomes more homogenous). 
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4. Frequency-dependent mechanisms for damping in alloys 

 

       In the previous chapter, we studied damping in model crystalline composites. Extend-

ing our analysis on damping in hard materials, we consider the role played by structure on 

damping. We perform oscillatory shear simulations to determine the loss modulus for 

three solids with identical interaction yet distinct structures: ordered, random and glassy 

alloys. The organization of this chapter is as follows: Section 4.1 introduces structure-

property relations for frequency-dependent damping in hard materials. Sec. 4.2 describes 

simulation models used in this study and Sec. 4.3 contains detailed structural characteri-

zation for the three solids. Results are discussed in Sec. 4.4 and summary in Sec. 4.5. 

 

4.1 Introduction 

 

Structure has traditionally played a very important role in determining a host of ma-

terial properties that can be exploited to engineer materials with novel applications. 

Alloys, including ordered and random alloys have been studied intensely for several dec-

ades [77], [78] and their crystal structure-property relations have been well understood in 

general. Equally important has been the study of non-crystalline materials (such as 

glasses) for a wide range of structural and other applications [79], [80]. The contrast in 

structure between the three classes of materials (ordered, random alloys, and glasses) con-

fers diverse mechanical, thermal and optical properties [81].  

Here, we will focus on mechanistic understanding of viscoelastic damping in alloys 

with various structures. Our work is motivated by the fact that frequency-dependent damp-

ing is an important materials characteristic, yet often overlooked for metal alloys. In the 

low frequency range, particularly in the case of soft materials, damping originates from 

structural relaxation, and naturally depends on the frequency [82], as typically demon-

strated by dynamical mechanical analysis [83]. At the higher, up to GHz, frequencies large 

quality factors (low damping) are desired for micromechanical and nanomechanical reso-

nators [39]–[41].  

 

Portions of this chapter may appear as: R. Ranganathan, Y. Shi and P. Keblinski, “Frequency-dependent 

damping in alloys”, unpublished. 
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Finally, in the THz range, which is relevant, for applications such as phononic inter-

connects [13], and high-frequency sound attenuation [42]–[44], damping arises from 

anharmonic phonon-phonon coupling [21], [84] and is in the so-called Akhiezer regime 

[85]. Another damping mechanisms is anelastic relaxation, which have been exploited in 

hydrogen-loaded bulk metallic alloys [86]–[88] to enhance the internal friction.  

While structural effects on mechanical properties under constant strain or stress has 

been extensively studied with atomic-level simulations in crystalline materials and inor-

ganic glasses [80], a characterization of viscoelastic damping properties by such 

simulations is limited. Here, we employ molecular dynamics to simulations to study vis-

coelasticity in materials representative of metal alloys described by the same interatomic 

potential, but with widely different structures. 

 

4.2 Model structures and methodology 

 

4.2.1 MD Model and structures 

 

We employ the Lennard-Jones (LJ) potential to describe binary, equiatomic ordered, 

random and glassy alloys. The energy interaction parameter, 𝜀 and the length scale param-

eter, 𝜎 parametrize the interatomic energy, 𝐸 = 4𝜀 [ (𝜎/𝑟)12 − (𝜎/𝑟)6 ], similar to the 

potential used in chapter 3. The parameters used for the two components systems are: ε11 

= 0.15 eV and σ11 = 2.7 Å, ε22 = 0.5 ε11, ε12 = 1.5 ε11, σ22 = 0.91 σ11, and σ12 = 0.95 σ11. The 

masses for the two species are made equal to 46 g/mol to simulate a system comparable 

to Ni-Nb 50-50 alloy [89], [90]. These parameters are inspired from the classic Kob-An-

derson model for binary LJ glass [91], [92], with two notable differences – (a) our system 

is equiatomic, compared to a 80:20 atomic ratio in the original work and (b) the σ values 

are modified slightly, to yield stable ordered, random and glass structures for the same set 

of parameters. The original Kob-Anderson parametrization yields an unstable (against 

glass formation) random alloy phase.  
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The ordered structure consists of the two atom types placed in an FCC lattice in alter-

nate basis positions. Random structure is generated from a pure FCC crystal (say, type “1” 

atoms) and randomly switching 50% of atoms to type 2. Glass is generated from the ran-

dom phase by a melt-quench process involving heating from 300 K to 1500 K; 

equilibrating and quenching back to 300 K under zero hydrostatic pressure using a quench 

rate of 6.8 K/ps. The resultant glass structure shows no crystallization during a 11 ns con-

stant energy and volume (NVE) simulation (see Sec. 4.3.1) and is characterized by pair 

correlation functions similar to the original Kob-Anderson glass [92]. 

Our standard simulation cell contains of 32,000 atoms in a cubic simulation cell (box 

length ~8.2 nm) with periodic boundary conditions applied along all three directions. 

Model structures were initially equilibrated at 300 K and at zero external pressure, before 

characterizing viscoelastic damping via non-equilibrium, oscillatory shear simulations in 

the NVE ensemble. All simulations were performed with a timestep of 0.44 fs using the 

LAMMPS simulation package [51].  

 

4.2.2 Methodology 

 

We follow the oscillatory shear methodology presented in chapter 2. Briefly, we apply 

a sinusoidal shear strain, 𝛾𝑥𝑦 =  𝛾𝑜 sin (2𝜋𝑓𝑡) at a shear frequency, 𝑓 by tilting a face of 

the simulation cell with a maximum amplitude, 𝛾𝑜 of 2%. This strain is well below the 

elastic limit for the ordered, random and glass structures which were found to be approx-

imately 13.2%, 9.9% and 4.2% respectively (see Sec. 4.3.3). Loss modulus is computed 

from the averaged stress-strain profiles (refer to chapter 2). By the end of the application 

of shear deformation, we observe only modest increase in temperature (maximum of ~60 

K) about the starting temperature of 300 K (for comparison, the calculated melting point 

for ordered and random alloys is about 1100 K and the glass transition temperature calcu-

lated with a quench rate of 6.8 K/ps is 990 K; see Sec. 4.3.2). We are primarily interested 

in the dependence of loss modulus on the structure and shear frequency, and loss modulus 

is used synonymously with the damping capacity.  

Sample high frequency (f ~ 1 THz) stress-strain data obtained from oscillatory shear 

simulations for all three structures are shown in Figure 4.1(a), where the stress shown is 
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averaged over 5 shear cycles. Atomic snapshots of a section of the simulation cell for each 

of the three structures are shown in Figure 4.1(b). To clearly depict the phase shift, the 

stress data are scaled to have the same amplitude as the strain. As observed from the figure, 

the glassy alloy exhibits the largest δ of 31o, random alloy has δ = 11o, while ordered 

structure shows negligible δ (=1o). The stress amplitude however, depends on the stiffness 

of the material, and as expected, shows an opposite trend, with values of 0.87 GPa, 1.3 

GPa and 1.7 GPa observed for glass, random and ordered alloy structures respectively. 

This translates to a large loss modulus for glass (𝐺′′ = 0.45 GPa), appreciable modulus for 

random (𝐺′′ = 0.25 GPa) and negligible modulus (𝐺′′ = 0.03 GPa) for the ordered alloy.  

 

 

 

 

Figure 4.1: Averaged shear stress, τxy (solid, colored lines) and shear strain, γxy (dotted line) profiles 

for shear at frequency, f ~ 3.86 THz for ordered, random and glassy structures. Stress data for the 

three structures have been normalized to show the effect of phase shift (indicated) clearly. (b) Atom-

istic snapshots of the side view of a small section of system size (~3.6 nm cross-sectional length) for the 

three structures. 
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4.3 Characterization of model structures 

 

In this section, we present a detailed characterization of the model structures obtained 

with the defined interaction parameters, including the glass transition temperature, melting 

points of ordered and random alloys and elastic properties of all three structures.  

 

4.3.1 Structural characterization of glass  

 

The original Kob-Andersen glass model [91] has been modified slightly to render 

stable phases of ordered, disordered and glassy systems with the same potential parame-

ters. The new parameters for equiatomic glass containing two LJ atom types were 

described in Sec. 4.2.1. The original set of parameters yield an unstable random alloy 

phase (that becomes amorphous spontaneously). Moreover, we observe that the glass does 

not show any signs of crystallization at long time scales, as evidenced from pair correlation 

functions during a long NVE simulation of 11 ns, shown in Figure 4.2. 

 

 

 

 

Figure 4.2: Pair correlation function for the glass model used in this work. Nearly identical plots at 

the beginning and end of a long NVE simulation (t = 11 ns) indicate that the glass is stable.  
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4.3.2 Melting points and glass transition temperature 

 

The thermodynamic melting point for ordered and random alloys were estimated by 

gradually heating the solid phase in a slab geometry to mimic melting from a free surface. 

The solid phase was heated from T ~ 1 K to T ~ 2250 K in steps of ~ 20 K. At the end of 

each heating step, constant temperature equilibration was performed for about 20 ps. 

Shown in Figure 4.3(a) are the results for estimation of melting points. From the jump in 

potential energy, the melting points for ordered and random alloys are found to be in the 

range 1000 – 1200 K. 

To calculate the glass transition temperature (Tg), we heat the original random al-

loy to 1500 K and equilibrate the melt. Following this, the melt is quenched to a 

temperature of 300 K under zero external pressure, with a quench rate of 6.8 K/ps as shown 

in Figure 4.3(b). Tg, as estimated from the intersection of tangents drawn from either ends 

of the volume-versus temperature profile is about 990 K. 

 

 

 

 

Figure 4.3: (a) Variation of potential energy with temperature during slow melting of ordered and 

random alloys. (b) Variation of volume with temperature during quenching of melt. Glass transition 

temperature is estimated to be 990 K. 
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4.3.3 Elastic limit for the ordered, random and glassy alloys 

 

We estimate the extent of elastic behavior (the elastic limit) for all three structures 

under the application of steady state shear deformation. The normalized shear stress (𝜏𝑥𝑦) 

and shear strain (𝛾𝑥𝑦) are plotted in Figure 4.4 for a constant strain rate (= 10-3 ps-1) shear 

deformation. The peak values of 𝜏𝑥𝑦 for ordered, disordered and glass structures were 

approximately 12 GPa, 6.4 GPa and 1 GPa respectively. Glass is seen to exhibit significant 

plasticity, which is not of much concern for this work considering we apply strains (~2%) 

well below the elastic limit. The elastic limit was found to be approximately 13.2%, 9.9% 

and 4.2% for ordered, disordered and glass structures respectively. 

 

 

 

Figure 4.4: Shear-stress-shear strain plots for ordered, random and glass structures to determine 

the elastic limit. 
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4.4 Results and discussion 

 

4.4.1 Frequency-dependence of damping 

 

 Oscillatory shear deformation has been performed over nearly five decades in fre-

quency for all three structure. Figure 4.5(a) shows the results of frequency-sweep 

simulations. For random alloy and glass, shear stress was averaged not only over 5 cycles, 

but also over three independent structures for good statistics. For the ordered alloy, the 

averaging was performed over three orthogonal tilt systems. The first key observation is 

that there is a pronounced peak in damping in the random and glassy alloys in the high-

frequency range, which is essentially not exhibited by the ordered alloy. Also, upon low-

ering of frequency, an approximate power-law behavior in the dependence of loss modulus 

on shear frequency is observed (see Figure 4.5(b)). Finally, in the low frequency range, 

loss modulus shows a constant power-law decay for ordered and random alloys, whereas 

in the glassy alloy, power-law scaling persists only in a limited frequency range spanning 

about two decades in frequency.  

 
 

 

Figure 4.5: (a) Frequency-sweep simulations showing the variation of loss modulus for ordered, ran-

dom and glass structures. (b) Same data as in panel (a) but in a log-log scale, depicting power-law 

scaling between loss modulus and frequency. Power-law scaling holds for two decades of frequency 

for glass, and more than three decades in frequency for random and ordered alloys. 
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4.4.1.1 Damping at high frequencies 

 

In order to explain the mechanism for high-frequency damping in three structures, we 

first verify, by inspection, that the oscillatory deformation does not lead to any atomic 

rearrangements or defect formation for any shear frequency. Therefore, we argue that the 

damping exhibited by these structures originates from anharmonic vibrational coupling, 

akin to that observed previously for epitaxial composites (see Chapter 3, [57]). It is also 

likely that high frequency loss modulus peak in glasses has the same origin. To give more 

credence to this proposition, we compute the vibrational mode-dependent shear Grüneisen 

parameter, 𝛾12,𝑖, which is a measure of the relative change in mode frequency, 𝜔𝑖 with 

respect to infinitesimal changes in shear strain, 𝜀12 [43]. 𝛾12,𝑖 is described according to the 

following equation: 

           𝛾12,𝑖 = (1/𝜀12) 𝜕𝜔𝑖/𝜕𝜀12                   (4.1) 

  

Here, the indices 1 and 2 correspond to the component of shear stress/strain. Vibra-

tional frequencies were computed by the method described in Sec. 2.3.1, for an 

undeformed, 864-atom structure (ordered, random and glass alloys) subjected to a small 

shear deformation. The mode-dependent Grüneisen parameters are plotted in Figure 

4.6(a). We observe that 𝛾12 are generally the largest for the glass structure across the whole 

frequency range and have noticeable values for the random alloy. By contrast, the ordered 

structure has negligible 𝛾12 (more than two orders of magnitude lower than random alloy 

and glass). We also note that the range of vibrational frequencies (as shown by the vibra-

tional density of states in Figure 4.6(b)) coincide well with the frequency range over which 

the peak in damping is observed, further signifying the primary reason for damping to be 

the anharmonicity in coupling of vibrational modes.  
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Figure 4.6: (a) Mode-dependent shear Grüneisen parameter (𝜸𝟏𝟐) for ordered, random and glass com-

puted for a system size of 864 atoms (box size ~24 Å). Random alloy and glass have 𝜸𝟏𝟐 that are two 

to four orders of magnitude larger than ordered structure, as seen from the inset which shows the 

data plotted on a logarithmic scale. (b) Vibrational density of states for the three structures. 

 

4.4.1.2 Damping at intermediate frequencies 

 

Next, we focus on the dependence of damping on shear frequency, starting from the 

peak and going down in the frequency scale. We observe that the loss modulus (and the 

phase shift) can be well-described by a power-law behavior over different frequency win-

dows for each of the three structures. Shown in Figure 4.5(b) are loss moduli for the three 

structures with power-law fits with respect to frequency, according to the equation 𝐺′′ =

𝐺′′𝑜𝑓𝑛. For glass, we observe that power-law behavior exists only in a small frequency 

range (spanning 2 orders of magnitude), beyond which 𝐺′′ becomes nearly constant. For 

ordered and random alloys, power-law scaling holds over nearly four decades in fre-

quency. The exponents, 𝑛 for ordered, random and glass alloys were found to be 0.65, 

0.91 and 0.82 respectively.  

It is well known that a large number of frequency-dependent responses in material 

property that follow some form of relaxation as a function of time, exhibit a power-law 

scaling. Notably, a large body of work on sound attenuation [93]–[96] and propagation of 

shock waves in viscoelastic materials [97] and damping in nanomechanical resonators [39] 
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show a power-law scaling with respect to frequency. The exponent, 𝑛 for all three struc-

tures in this work are between 0 and 2, which is also what is observed for sound attenuation 

in a majority of materials. 

 

4.4.1.3 Low-frequency damping in glass 

 

Finally, we will focus on the intermediate and low-frequency damping in glass, as 

presented in Figure 4.5, and characterized by persistent, and even slightly increasing loss 

modulus with decreasing frequency. Such loss in glasses is associated with collective mo-

tion of atoms such as that associated with shear transformation zones and associated 

plastic deformation [49], [98]–[100]. Such local atomic motion is usually irreversible, in-

volving pockets of local plastic behavior (so called soft-spots), which manifest as shear 

transformation zones during the onset of plastic deformation.  

To detect and characterize such possible collective motion of atoms, we define defor-

mation clusters as composed of atoms that are displaced by more than 1.6 Å (equal to 

shear amplitude) by the end of the 5-cycle deformation and any atom in the cluster has at 

least one “displaced” neighbor within a distance of 4.8 Å (corresponding to the first shell 

of nearest neighbors).  

Figure 4.7 shows the distribution of soft-spot clusters for three frequencies (f = 0.45 

GHz to 45 GHz) in the low frequency regime. Clusters are indexed with a cluster “num-

ber” (x-axis) according to the increasing order of cluster sizes. According to Figure 4.7, 

there is a clear trend of simultaneous increase in both cluster sizes and the number of 

clusters, with decreasing shear frequency. This frequency-dependent cluster size distribu-

tion could arise from two possible sources – either, (a) at lower shear frequencies, the 

mechanism of dissipation could be dominated solely by structural rearrangements, which 

leads to a frequency-dependent soft-spot distribution, or (b) the larger amount of physical 

time spent during deformation for a given number of cycles could lead to larger soft-spots 

at lower frequencies (an effect similar to aging in glasses [101], [102]).  
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Figure 4.7: Evolution of cluster size distribution at the end of five cycles of shear of glass, for three 

shear frequencies in the low frequency regime. Cluster size (y-axis) is the number of atoms forming 

the soft-spot and the cluster number (x-axis) is just an index of each cluster sorted by ascending order 

of cluster sizes. Also shown are snapshots of atomic regions forming the clusters, color-coded accord-

ing to their atomic displacement with respect to the initial, undeformed state. Snapshots are generated 

using the OVITO visualization tool [103]. 

 

To understand the reason behind frequency-dependent distribution of soft-spots more 

clearly, we perform oscillatory shear simulations at various frequencies where the total 

simulation time is kept constant. These simulations are performed under constant volume, 

constant temperature (NVT) conditions. Coupling to a thermostat (Nose-Hoover [70], [71] 

in this case) was necessitated by the need to prevent significant temperature rise during 

shear at high frequencies over long time-scales. The total time simulated is 11 ns, which 

corresponds to a total of 5 shear cycles at the lowest frequency (f = 4.5x10-4 THz) and over 

100,000 cycles at the highest frequency (f = 10.3 THz). 

Shown in Figure 4.8 are the cluster distribution characteristics in these NVT shear 

simulations. Panel (a) shows the distribution of cluster sizes sorted according to size, for 

a wide range of shear frequencies. We observe a clear trend for increasing cluster size and 

number of clusters as frequency is lowered. In some sense, the shear agitation activates 

different shear transformation zones, depending on the frequency of agitation. 
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Additionally, in Figure 4.8(a), we show cluster distribution for the “no-shear” case, 

where we ascertain atomic motion arising solely from aging, as a reference. Interestingly, 

the no-shear case exhibits cluster statistics intermediate to those characterizing low and 

high frequency shear. This is particularly apparent in Figure 4.8(b), where the average 

cluster size and total cluster volume is plotted as a function of frequency, for clusters larger 

than 4 atoms and data for no-shear case are represented as dashed lines. Data are averaged 

over five independent samples to ensure good statistics. We observe a sharp increase in 

both cluster size and cluster volume around 1 THz, followed by a weak frequency-depend-

ence as frequency is lowered.  

 

 

 

Figure 4.8: Evolution of cluster sizes for oscillatory shear simulations run for a constant time (about 

11 ns) instead of constant number of cycles as shown in Figure 4.7. (a) Distribution of cluster sizes for 

various frequencies for a single glass sample. (b) Variation of average cluster size and percentage of 

atoms that contribute to irreversibly deformed clusters with frequency. The corresponding average 

size and deformed volume for the “no shear” case are indicated by dashed lines, with the range of 

error bars depicted by transparent colored bands. 
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 It is interesting to note that the threshold frequency occurs in the range of the peak 

damping frequency. This shows that the two primary channels for damping, namely, vi-

brational anharmonicity and structural relaxation, operate at distinct frequency regimes. 

 

4.4.1.4 Stress relaxation in glass 

 

An effect concomitant with the low-frequency local deformation in glass is likely 

to be significant structural relaxation. A metric for probing structural relaxation (accom-

panying atomic motion) during low-frequency shear of glass, is the relaxation of shear 

stress from an initially sheared state. Shown in Figure 4.9 is the relaxation of normalized 

shear stress (𝜏𝑥𝑦) from an initially deformed state (with shear strain of 2%) during an NVE 

simulation of 3.5 ns, for all three structures. As seen from the figure, glass exhibits signif-

icant stress relaxation (~56%) which is an indication of additional damping at low-

frequencies, arising from atomic motion. Ordered and disordered structures maintain per-

fect crystallinity and do not show relaxation. 

 

 

 

 

Figure 4.9: Relaxation of normalized shear stress, τxy starting from an initially stressed state, for the 

three systems considered (ordered, disordered and glass). 
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4.4.1.5 Comparison with constant shear-rate deformation 

 

The results described in the previous sections strongly indicate that low frequency 

agitation of the glass structure enhances structural relaxation via local clusters that un-

dergo irreversible deformation, while agitation at higher frequency suppresses this 

phenomenon. The nearly-invariant cluster size distribution with frequency describes the 

qualitative variation of loss modulus for glass in the low-frequency regime. Moreover, the 

clusters observed originate in a random manner and there is less than 10% overlap between 

atoms contributing to clusters observed at any two randomly chosen frequencies. Our 

proposition is that such a mechanism for enhanced local deformation at lower frequencies 

is a direct consequence of larger time per cycle for local atomic motion at lower frequen-

cies, similar to the phenomenon in low-frequency fatigue of bulk metallic glass [100]. This 

is further corroborated via constant shear-rate simulations at a range of shear rates corre-

sponding to those for the oscillatory deformation.  

In addition to oscillatory shear deformations that show frequency-dependent activa-

tion of deformation cluster sizes and cluster volume, constant-rate shear deformation at a 

range of strain rates exhibit a time-dependent evolution of soft-spots. Figure 4.10 shows 

the fraction of deformed volume (soft-spots) as a function of time, for strain rates that 

correspond to the same set of rates during oscillatory shear deformations. Data are aver-

aged over 5 independent samples for good statistics. The maximum shear strain at each 

rate is set equal to 0.1. A clear trend for larger rates (lower deformation time) suppressing 

cluster formation akin to oscillatory shear deformation is clearly evident. 

 Secondly, we observe that the deformation volume for all rates collapse on to the 

curve for “no shear” case and on to each other for low values of strain, and begin to deviate 

at larger strains. The approximate strain at deviation from the “no shear” curve for the four 

lowest strain rates is plotted in the inset in Figure 4.10 and shows the deviation sets in 

approximately at a small window of strain between 0.2 and 0.4%. This further ties well 

with the oscillatory shear damping results in that, the inverse relation between the time for 

formation of deformation clusters and strain rates gives rise to a nearly-invariant loss mod-

ulus below a certain threshold frequency.  
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Figure 4.10: Variation of deformation volume as a function of time, for various strain rates during 

constant-rate shear deformation. The maximum shear strain for each case is 0.1. Also shown in black 

is the case for “no shear”. The strain at which the four lowest frequencies depart from the curve for 

“no shear” (indicated by red circles) are plotted in the inset. Data are averaged over 5 independent 

samples. 

 

4.5 Summary 

 

In this chapter, we elucidated mechanisms of viscoelastic damping in three structures 

with stark contrast in structure – ordered, random and glassy alloys, using non-equilibrium 

oscillatory shear molecular dynamics simulations. Distinct differences in frequency-de-

pendent damping characteristics were observed for these structures. Our key findings are: 

 

1. At high frequency (of the order of THz), the large anharmonicity in coupling of 

vibrational modes as evidenced by large shear Grüneisen parameters, leads to a pro-

nounced peak in damping for random alloy and glass, with glass exhibiting a much broader 

and taller peak. 
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2. For frequencies below the peak damping frequency, we show that the loss modulus 

and phase difference can be well-described by a power-law behavior, over a different fre-

quency range in each of the three structures. Ordered and random alloys exhibit power-

law scaling over nearly four decades in frequency, down to the lowest frequencies consid-

ered. Glass, on the other hand, shows this scaling behavior over about 2 decades in 

frequency, following which, it transitions into a nearly-constant damping regime with re-

spect to frequency. 

3. This finite damping at intermediate and low frequencies exhibited by glass arises 

from local irreversible deformation of atomic clusters (denoted as soft-spots). We show 

that the cluster size and volume fraction show a characteristic frequency-dependence. 

There appears to be a threshold frequency below which, there is an activation of soft-spots. 

We conclude that at high frequencies where anharmonic vibrational coupling is the dom-

inant damping mechanism, cluster formation is naturally suppressed.  
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5. Commonalities in frequency-dependent viscoelastic damping in 

glasses 

 

In this chapter, we use the non-equilibrium molecular dynamics oscillatory shear 

methodology to study frequency-dependent viscoelastic damping in a wide range of 

glasses. Section 5.1 gives an introduction on the history of development of various struc-

tural glasses and structure-property relations relevant for damping applications. This is 

followed by description of model structures in Sec 5.2 and results for various factors that 

influence the damping characteristics in the Cu-Zr bulk metallic glass (BMG) system in 

Sec 5.3. A critical comparison of damping in various glasses with a view to uncover com-

monalities in damping is presented in Sec 5.4 and finally, Sec 5.5 summarizes our findings. 

 

5.1 Introduction 

 

Although glasses have been used for a variety of applications for centuries, the dis-

covery of bulk metallic glass (BMG) by Duwez and co-workers [104] and subsequent 

efforts in engineering processing techniques and compositional studies have led to a num-

ber of structural applications [79], [80], [105]. A crucial aspect in this development has 

been the progress in the study of structure-property relations in glasses [106]–[110], un-

derstanding of which has led to glasses with exceptional mechanical properties such as 

enhanced plasticity [111]–[113], strength [112], [114] and fracture toughness [115]. 

Glasses are also candidate materials for applications in mechanical damping. In this 

context, two predominant mechanisms for damping are relevant – (a) damping via anelas-

tic relaxation and (b) viscoelastic damping. The former involves diffusion of species such 

as hydrogen trapped within glass, and has been used in tuning damping properties of hy-

drogen-loaded bulk metallic glasses [86]–[88]. The second mechanism forms the basis of 

this work and has its origin in atomic-level interactions and structural features that lead to 

an out-of-sync relation between stress and strain under cyclic deformation. 

 

Portions of this chapter may appear as: R. Ranganathan, Y. Shi and P. Keblinski, “Commonalities in fre-

quency-dependent viscoelastic damping in glasses”, unpublished. 
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These mechanisms are strongly dependent on the applied shear frequency (or rate). 

Widely different mechanisms are usually at play while contributing to damping at differ-

ent frequencies [46], [57], [116] and have been extensively studied for polymeric systems 

[117]. However, a mechanistic understanding of damping in inorganic glasses and possi-

ble avenues in which it can be tuned is currently lacking. 

At low frequencies, glasses exhibit structural relaxation over long time-scales, with 

the extent of relaxation being determined by the frequency [82]. At larger frequencies 

(approaching GHz and THz), damping properties are important for applications such as 

phononic interconnects [13] and sound attenuation [42]–[44]. The role of anharmonic vi-

brational coupling in high-frequency damping of glasses needs to be explored.  

Experimentally, direct measurement of viscoelastic damping is done via the dynam-

ical mechanical analysis [83]. In this technique, cyclic loading in the form of an oscillatory 

torque is applied to probe the stress-strain response to determine the complex modulus. 

Forces are applied either mechanically (routinely employed for studying soft matter [117] 

and sometimes for hard materials [32], [118]) where typical frequencies are limited to a ~ 

100s of Hz, or via electromagnetic forces [24], [36] to attain larger frequencies (~ 104 Hz). 

At even higher frequencies approaching vibrational frequencies (in the THz range), 

characterizing mechanical response becomes experimentally unattainable. However, two 

common experimental techniques that can be used to study mechanical relaxation at high 

frequencies via photon-phonon scattering processes include inelastic x-ray scattering 

(IXS) and Brillouin light scattering (BLS). IXS has been used extensively to measure 

sound attenuation coefficients [119]. Using BLS, one can typically measure elastic con-

stants including shear modulus from phonon velocities and obtain the so called acoustic 

phonon damping parameter from the spectra [120]–[122]. However, extending this to 

quantify dynamic mechanical damping from these techniques is not straightforward. In 

this context, molecular-level simulations are extremely useful to study viscoelastic damp-

ing over a wide range of shear frequencies. In particular, molecular dynamics deformation 

studies have been used extensively [110] to study mechanical properties including tensile 

[123], [124] and compressive deformation [125], indentation [90] fatigue [100] and plastic 

deformation under shear [49], [126].  
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In this chapter, we extend the oscillatory shear molecular dynamics simulations pre-

viously employed to study frequency-dependent viscoelastic damping in crystalline 

composites (chapter 3) and binary alloys including glasses (chapter 4), to study mecha-

nisms behind frequency-dependent viscoelastic damping in various model glasses.  

 

5.2 Simulation methodology and model structures 

 

Oscillatory shear simulations were employed to study viscoelastic damping in model 

glass structures. Our typical simulation protocol consists of oscillatory shear over 5 cycles 

under constant volume (NVE) condition to compute the averaged loss modulus, 𝐺′′ =

 𝐺 sin(𝛿). The temperature at the start of shear simulation is typically fixed at about 35% 

of the glass transition temperature (Tg). A consequence of the shear process is dissipation 

of heat that leads to an increase in temperature; in our simulations, we observe only modest 

temperature rise, to the extent of a few percent for an extended range of shear frequencies. 

As we shall show later, in a narrow region of frequencies in the high-frequency regime (of 

the order of a few THz), a pronounced peak in damping is observed, that could lead to a 

temperature increase by ~25% in some glasses. However, we note that this is still well 

below the Tg and hence, possible effects on softening effects due to shear are minimal. We 

also consider cases where we characterize damping for a constant amount of time as op-

posed to constant number of cycles, at different frequencies. In this case, the system is 

coupled to a Nose-Hoover thermostat [70], [71] to prevent high temperature rise over long 

time scales, especially at high shear frequencies. 

Shear frequency is varied over 5 decades (ranging from 10s of MHz to 10s of THz) 

where we uncover disparate mechanisms for damping at high and low frequencies. Figure 

5.1 shows sample stress-strain results averaged over 5 cycles of shear for the Cu-Zr BMG 

system at two shear frequencies (f = 2 THz and f = 0.02 THz), exhibiting markedly differ-

ent 𝛿 and 𝐺′′. Atomic snapshots at shear strains corresponding to zero, maximum and 

minimum shear strains are shown as insets (the tilt factors are exaggerated for clarity).  
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Figure 5.1: Typical stress-strain response for model Cu-Zr bulk-metallic glass at (a) f = 2 THz, show-

ing a large phase difference, and correspondingly, high loss modulus, and (b) f = 0.02 THz, showing 

low phase difference and low loss modulus. The peak shear modulus is also noted. 

 

5.2.1 Model structures 

 

We study viscoelastic damping in five model glasses, namely, (a) Cu-Zr BMG [127], 

(b) Dzugutov glass [128], (c) amorphous silicon (a-Si), (d) Wahnström glass [129] and (e) 

amorphous silica. All the glasses have been studied extensively in literature and have been 

used as models for understanding structure-property relations in glasses and studying me-

chanical properties [110], [123], [130]–[132]. We generate the starting glass structures by 

quenching the melt under zero external pressure using the Nose-Hoover barostat [133]–

[136]. For each structure, we allow at least 100 ps for equilibration at the molten state and 

then quench the melt with a rate Q. The values of Q usually attainable in computer simu-

lations are orders of magnitude larger than in experiment and are typically in the range of 

1010 to 1014 K/ps [127], [137]–[140]. For the BMG system, which forms our baseline for 

a study on various factors affecting the damping characteristics, we additionally employ 

various quench rates to study the effect of quench rate on damping as described in Sec. 

5.3.1 and Sec. 5.3.2. 

For each glass, the choice of force-field describing the interaction energy, the time-

step, the quench rate, the Tg, the system size and a few mechanical properties relevant for 

characterizing damping are listed in Table 5.1. Tg is estimated from the change in slope of 
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volume as a function of temperature during the quench, with the quench rates Q indicated. 

We use periodic boundary conditions along all three axes to simulate bulk properties. The 

final structures are metastable glasses characterized by well-defined pair correlation func-

tions consistent with literature. All simulations were performed with using the LAMMPS 

simulation package [51]. 

 

Table 5.1: Simulation details and material properties for the glass models studied 

Model/system Cu-Zr BMG Dzugutov* a-Si Wahnström** Silica 

 
Potential 

 
EAM [127] 

 
Dzugutov 

[128] 

 
Tersoff 

[141] 

 
LJ [129] BKS [142], with 

Wolf summation 

[143] (electrostatics) 

Time step (fs) 2 10.8 0.5 0.46 1.6 

T
g
 (K) 815 418 1100 1000 2430 

Quench rate   (Q, 

K/s) 
8.5x10

11
 1.83x10

11
 3x10

13
 8.26x10

12
 9.8x10

12
 

Shear               

temperature (K) 

 
300 

 
174 

 
540 

 
274 

 
900 

Shear modulus 

(G, GPa) 

 
18.38 

 
3.34 

 
34.1  

 
20.13 

 
35.3 

Elastic limit 4.9% 5.9% 12.9% 6.56% 14.2% 

Applied strain 

(oscillatory shear) 

 
1.5% 

 
1.81% 

 
3.95% 

 
1.99% 

 
4.36% 

System size         

(# atoms) 

 
16,384 

 
27,000 

 
27,000 

 
32,000 

 
24,000 

 
*For the Dzugutov glass, the fundamental length and time scale correspond to σ = 3.4 

Å and to = 2.16 ps [144] and we set the energy parameter ε = 0.1 eV to scale to physically 

relevant scales. **For the Wahnström glass, these constants correspond to σ22 = 2.7 Å, to 

= 0.46 ps and ε22 = 0.16 eV that correspond to a model 50-50 Ni-Nb bulk metallic glass 

[89], [90]. 
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5.3 Damping in BMG 

 

In this section, we focus on viscoelastic damping in the 1:1 atomic ratio Cu-Zr BMG 

system, with an emphasis on understanding the key factors that affect damping. These 

include the effect of quench rate used in generating the glass, the interplay between quench 

rate and cycle-dependent damping, the effect of shear amplitude and finally, the shear 

temperature. For each case, we perform “frequency-sweep” oscillatory shear simulations 

over multiple decades in frequency. 

 

5.3.1 Frequency-dependent loss moduli 

 

Frequency-sweep simulations to study the frequency dependence of loss moduli (𝐺′′) 

were carried out for BMG quenched at multiple quench rates. Figure 5.2 shows the varia-

tion of 𝐺′′ with frequency at T = 300 K. We observe a characteristic peak in damping in 

the high-frequency regime (of the order of a few THz), as previously demonstrated in the 

model Lennard-Jones glass described in chapter 4. As we shall show in detail later (Sec. 

5.4.1), the origin of this peak lies in the anharmonic coupling between various vibrational 

modes of the glass. Interestingly, we observe that the peak amplitude does not depend on 

the quench rate, while the intermediate and low-frequency regimes show a strong quench 

rate dependence. The likely explanation for this observation is that the degree of anhar-

monic coupling (as characterized by mode-dependent Grüneisen parameter) is rather 

insensitive to the quench rate. In other words, the shear frequency in this regime is large 

enough to overwhelm differences in damping due to rate of structural changes imposed by 

the quench rate. 

With decreasing frequency, damping decreases initially following an approximate 

power-law scaling with frequency, followed by nearly frequency-independent damping. 

However, the extent of damping in the intermediate and low frequencies (extending down 

to 50 MHz) shows a strong dependence on quench rate – larger quench rate exhibits larger 

damping (seen more clearly in inset of Figure 5.2). Finite damping in glasses at low fre-

quencies is a consequence of long time-scale structural relaxation and associated local 
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deformation as already discussed in chapter 4. Similar persistent damping in the BMG 

system, combined with the dependence on quench rate strongly indicate that larger quench 

rates lead to more metastable glasses with shallower energy minima, consequences of 

which are greater structural relaxation and enhanced damping. 

 

 

 

Figure 5.2: Frequency-sweep simulations depicting the variation of loss modulus with shear frequency 

for the Cu-Zr BMG system. Response for four different quench rates are shown. The characteristic 

peak in the high-frequency regime overlap for all quench rates. Low-frequency damping is affected 

by the quench rate, with larger quench rates resulting in larger damping. Inset shows the portion of 

the low-frequency regime magnified. 

 

5.3.2 Dependence of damping on number of shear cycles 

 

In our oscillatory shear simulations, a primary concern is the variation of calculated 

loss moduli with the number of shear cycles. This is particularly of interest for glasses due 

to their metastability. It is expected that atomic rearrangements with multiple cycles of 

shear could result in damping that could potentially be dependent on the number of shear 

cycles, Ncycles. We ideally desire a structure that does not exhibit significant cycle-depend-

ent damping, in order to keep our simulation times tractable, especially at low frequencies. 
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To examine this effect, we study the dependence of loss modulus on Ncycles for the four 

quench rates described in the previous section. 

Shown in Figure 5.3 are the results for damping at two frequencies, f = 0.5 THz and 

0.5 GHz, over multiple shear cycles. We perform these simulations at constant tempera-

ture (NVT) of T = 300 K to prevent abnormal structural rearrangements due to temperature 

rise. We observe that the fastest quench rate (Q = 3.4 K/ps), being the most metastable, 

results in damping that varies strongly with Ncycles, especially in the initial stages.  

 

 

 

Figure 5.3: Effect of aging on the computed loss modulus for glasses quenched at various rates. Aging 

in glass leads to estimated properties that are dependent on the number of shear cycles; this is effect 

is probed by varying the number of shear cycles (Ncycles) for each quench rate. Shown in (a) and (b) 

are data for two widely different shear frequencies (f = 0.5 THz and f = 0.5 GHz respectively). Simu-

lations performed under NVT conditions at a temperature of 300 K. The quench rate used for the 

bulk of the analysis pertaining to the BMG, namely Q = 0.85 K/ps shows fairly cycle-independent 

damping. 

 

For glasses quenched with Q = 0.85 K/ps and lower, we observe fairly cycle-inde-

pendent damping. We note that such cycle-independent damping is also exhibited at other 

frequencies and we just show two frequencies here for illustrative purposes. For all our 

further analyses, we use the structure quenched at Q = 0.85 K/ps. 
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5.3.3 Effect of shear amplitude 

 

Under oscillatory shear deformation, the extent of shear amplitude determines the 

nature of viscoelastic response in the material. Typical viscoelastic materials exhibit a 

“linear” viscoelasticity up to certain amplitude, beyond which the response becomes “non-

linear”. The linearity in this context refers to the dynamical shear modulus (either 𝐺′ or 

𝐺′′) being invariant with respect to the shear amplitude. This is a routine analysis in the 

field of dynamical shear experiments, especially in the field of soft matter such as polymer 

composites [117] where, the strain amplitude determines whether the shear falls under the 

so-called Small Amplitude Oscillatory Shear (SAOS) or Large Amplitude Oscillatory 

Shear (LAOS) regime. SAOS corresponds to a linear viscoelastic response while LAOS 

gives rise to non-linearity [117]. 

In our simulations, we check for linearity in viscoelastic response by monitoring the 

dependence of 𝐺′′ on the shear amplitude. Very low strain amplitudes result in poor signal 

to noise ratio for the estimation of 𝐺′′, especially at low frequencies. Figure 5.4 shows the 

variation of 𝐺′′ with strain amplitude for four frequencies separated by an order of mag-

nitude from each other. Simulations are performed at 300 K under NVE conditions. As 

seen from the figure, non-linearity in the response begins to set in at shear strains, 𝛾𝑥𝑦 > 

~0.04, which is also close to the elastic limit for this system (refer to Table 5.1). We thus 

choose a value of 𝛾𝑥𝑦 = 0.015 (or 1.5%) in all our shear simulations in the BMG system 

to ensure good signal-to-noise ratio and to simultaneously operate within the linear visco-

elastic regime. 
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Figure 5.4: Effect of shear strain amplitude on viscoelastic response in BMG. Loss modulus is esti-

mated for four different shear frequencies spanning four orders of magnitude. Significant non-

linearity in the response is observed at strain amplitudes, 𝛄𝐱𝐲 larger than about 0.04 (or 4%). 

 

5.3.4 Effect of shear temperature 

 

The predominant role played by temperature in viscoelastic response is softening of 

the material, leading to more viscous character. We quantify this effect via frequency-

sweep simulations at various temperatures. Figure 5.5 shows the variation of loss modulus 

with frequency for temperatures ranging from 30 K to 800 K. We note that the Tg for the 

glass is ~815 K. We observe that the high-frequency peak is almost invariant with respect 

to temperature. This is not surprising since this corresponds to frequencies in the range of 

thermal vibrations, where the damping mechanism is due to anharmonic coupling of vi-

brational modes (see Sec. 5.4.1 for discussion on the role of vibrational modes). It has 

been shown that the Grüneisen parameter [73], which is a measure of the anharmonicity 

in coupling of modes, is only weakly dependent on temperature for oxides [145], [146] 

and we suppose that is the case for our system as well. The softening at higher tempera-

tures lowers the high-frequency modulus marginally. 
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Upon lowering frequency however, we observe a marked difference in damping. This 

is a consequence of a larger viscous character at higher temperatures, with associated in-

crease in the phase shift. At 800 K (very close to the Tg), we observe that at the lowest 

frequency (f = 5x10-4 THz), the loss modulus begins to drop with frequency; here, although 

the phase shift increases with lowering frequency, the shear stress begins to drop as well 

(due to softening). 

 

 

 

Figure 5.5: Frequency-sweep simulations to study the effect of shear temperature on damping in BMG. 

The maximum temperature (800 K) is just below the Tg for the BMG, which is ~815 K. 

 

5.4 Commonality in damping mechanisms in glasses 

 

The frequency-dependent damping characteristics in the BMG system, namely, the 

high-frequency peak (in the THz regime) and persistent damping in the low-frequency 

regime was also observed for the model binary glass discussed in chapter 4. This obser-

vation leads us to ask the following question – “are the characteristics of viscoelastic 

damping in glasses more universal in nature and can be understood mechanistically for a 

wide variety of inorganic glasses?”. With this goal in mind, we extend our work to study 

damping in four other glasses – (a) Dzugutov glass, (b) amorphous silicon (a-Si), (c) the 
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Wahnström glass and (d) amorphous silica. We perform oscillatory shear deformation 

simulations at frequencies similar to the case of the BMG system, to look for typical char-

acteristics in the frequency-dependent damping. 

Shown in Table 5.1 is the list of simulation details, the potential used for describing 

interactions and various system properties relevant for this work, for all the glass models. 

We note that we consider both unary (the Dzugutov glass and a-Si) and binary glasses 

(Wahnström and amorphous silica), in addition to the BMG glass discussed so far, which 

forms the baseline for our comparison. The two most important factors to be considered 

while comparing the damping properties between various glasses are the elastic limit and 

the glass transition temperature (Tg). The former affects the linearity in viscoelastic re-

sponse (as discussed in Sec. 5.3.3) and the latter determines the relative scaling between 

the temperature of shear and Tg, around which significant softening occurs (see Sec. 5.3.4). 

Thus, to maintain similar shear conditions across all glasses, we set the shear strain and 

temperature for the BMG system as the baseline and scale the strain and temperature of 

the remaining four glasses based on their individual elastic limits and Tg. The scaling is 

such that the same ratio for {strain / elastic limit} and {temperature / Tg} is used for all 

the glasses. These values are also given in Table 5.1 

Figure 5.6 shows the comprehensive damping data from frequency-sweep simulations 

for all the five glasses. The loss modulus is shown normalized by the maximum loss mod-

ulus of each glass, to capture qualitative trends in damping across all glasses. As seen from 

the figure, a striking commonality in the damping characteristics is observed – firstly, in 

the high-frequency regime (ranging from ~0.1 THz to 10s of THz), all glasses show a 

pronounced peak in damping. With decreasing frequency starting from the peak, 𝐺′′ de-

creases as an approximate power law over an intermediate frequency window (refer to 

chapter 4) for all glasses. Lastly, with further reduction in frequency, a persistent (weakly 

increasing) damping is observed in all glasses, extending into the MHz regime. The extent 

of damping in the low frequency limit (as shown clearly in the magnified portion in inset) 

is however dependent on the nature of glass – stiffer glasses such as silica and a-Si exhibit 

comparatively lower normalized 𝐺′′. We note however, that the absolute magnitudes for 

silica and a-Si are larger than the other glasses, owing to a higher shear modulus. The 

mechanisms behind the damping characteristics are discussed in the following sections. 
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Figure 5.6: Frequency-sweep simulations for the five glass structures considered in this work. For each 

glass, we show the dependence of loss modulus (normalized by the maximum in 𝑮′′) as a function of 

shear frequency. All glasses show a characteristic peak in the high-frequency regime and a nearly-

invariant, finite damping in the low-frequency regime (See inset for the magnified portion of the low-

frequency regime). Stiffer glasses such as a-Si and Silica exhibit larger absolute 𝑮′′in the high-fre-

quency regime and a smaller, albeit non-vanishing normalized 𝑮′′ in the low-frequency regime. 

 

5.4.1 Role of vibrational coupling in damping 

 

We have previously shown that enhanced damping at frequencies in the range of nat-

ural vibrational frequencies of the material is a direct consequence of large anharmonicity 

in the coupling between vibrational modes in glass (Chapter 4, Sec 1.3.1.1). The predom-

inant vibrational modes in glasses, denoted as “diffusons”, lack a well-defined wave vector 

and polarization [43] as opposed to propagating, wavy, “phonons” in crystalline structures. 

The peak in damping is most likely a result of the large anharmonicity in the coupling 

between vibrational modes. To check for correlation between the peak frequency for each 

glass (as obtained in Figure 5.6) and the corresponding vibrational frequencies, we plot 
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the peak frequency and the average vibrational frequency in Figure 5.7. Average vibra-

tional frequency is obtained from computing the vibrational density of states from Fourier 

transform of the velocity autocorrelation function [147]. As seen from the figure, there 

exists a strong correlation between the two, signifying that damping in the THz regime 

essentially stems from anharmonic coupling of vibrational modes. 

 

 

 

Figure 5.7: Correlation between the average frequency obtained from vibrational Density of states 

(DOS) for each glass, and the peak position in the frequency-dependent loss modulus as obtained in 

Figure 5.6. 

 

5.4.2 Low-frequency damping and structural relaxation 

 

We have previously shown in chapter 4 that damping in glasses in the low-frequency 

regime arises from a collective motion of atoms that contribute to local, irreversible plastic 

deformation. This mechanism is suppressed at frequencies corresponding to the high-fre-

quency peak (in the THz range of vibrational frequencies) and leads to the persistent 

damping in the low-frequency regime. The formation of local deformation clusters, the 

so-called “soft-spots” are typically associated with shear transformation zones and even-

tual plastic deformation [49], [98]–[100]. 
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Here, we study the evolution of such soft-spots or clusters as function of shear fre-

quency, for all the glasses and the results are shown in Figure 5.8. These simulations are 

performed under constant temperature (NVT) conditions, where the total time for shear 

deformation is fixed (compared to constant number of shear cycles as shown in Figure 

5.6). The total simulation time is fixed at 50 ns. The criterion for an atom to contribute to 

a cluster is that it should have a displacement at least equal to shear amplitude and should 

have at least one other displaced neighbor within a cutoff distance equal to the first shell 

of nearest neighbors. This cutoff corresponds to the first minimum in the pair correlation 

function, g(r). We observe that a-Si and silica exhibit negligible cluster formation with 

this criterion, hence, the displacement amplitude is reduced to half the shear amplitude for 

these two cases. 

Figure 5.8 shows the formation of both average cluster size and percentage of atoms 

that contribute to the clusters (the irreversibly deformed volume). For all glasses, we ob-

serve a decrease in cluster sizes for increasing frequency. Similarly, the volume of cluster 

atoms (panel b) shows a decreasing trend with increasing frequency. One exception here 

is the a-Si glass, which shows an increase in cluster volume (at 10 THz), albeit consisting 

of smaller cluster size compared to lower frequencies. This frequency-dependent cluster 

formation is, in fact, further accentuated for the case of constant number of cycles (as 

depicted in Figure 5.6). We argue that the larger amount of time available for nucleation 

and growth of clusters at lower frequencies leads to a nearly-constant or even slightly 

increasing damping with decreasing frequency. A similar phenomenon for “viscous flow 

units” was observed by Wang et. al [19] during cyclic deformation of metallic glasses, 

albeit at high temperatures required for their activation. This low-frequency damping 

mechanism is a common feature in all glasses, but the extent of damping depends on the 

ease of formation of clusters, which in turn depends on the intermolecular forces at the 

atomic scale. We thus show that oscillatory shear deformation at low frequencies serve as 

a powerful probe for quantifying the ease of local atomic motion and the associated struc-

tural relaxation in glasses. 

 



 

     67 

 

Figure 5.8: Characterization of clusters (“soft spots”) formed during constant-time oscillatory shear 

simulations for various glasses, as a function of shear frequency. The total simulation time at each 

frequency, for each glass is 50 ns. (a) Average cluster sizes at the end of 50 ns of oscillatory shear. (b) 

The total volume fraction of irreversibly deformed clusters at the end of shear. The general trend of 

increasing cluster size and volume with decreasing frequency is evident. 
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5.5 Summary and Conclusions 

 

Using non-equilibrium molecular dynamics oscillatory shear simulations, we have 

studied viscoelastic damping extensively in a model Cu-Zr bulk metallic glass (BMG) and 

show a striking commonality in damping characteristics for various glasses. The two im-

portant characteristics in the dependence of damping (as characterized by the loss 

modulus, 𝐺′′) on shear frequency are (a) the presence of a well-defined peak in the high-

frequency (THz) regime and (b) persistent, nearly-constant damping in the intermediate 

and low frequency regime. We show that the quench rate plays an important role in damp-

ing, especially at low frequencies – larger quench rates (glass at shallower energy minima) 

lead to a greater degree of local deformation, leading to larger damping. Closely associated 

with this is the time-dependent loss modulus for glass quenched at large quench rates – 

faster quenched glass exhibit moduli that vary with the number of shear cycles owing to 

greater metastability. The two other key factors are shear amplitude and shear temperature 

– shear amplitudes near and beyond the elastic limit exhibit non-linear viscoelastic re-

sponse and larger shear temperatures result in larger loss moduli in the low-frequency 

limit. 

We show a clear correlation for the peak frequency (in the THz range) in damping 

response with the average vibrational frequency of glass, signifying that high-frequency 

damping stems from the large anharmonicity in coupling of vibrational modes. At inter-

mediate and low frequencies (reaching up to 50 MHz), we show that persistent damping 

in all glasses is a result of long time-scale local, irreversible deformation. From this study, 

we demonstrate that oscillatory shear deformation serves as a powerful probe for further-

ing mechanistic understanding behind damping, and particularly in glasses, to quantifying 

the degree of local atomic motion and associated stress relaxation at low frequencies. 
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6. Summary, perspectives and future work 

 

Viscoelastic damping of materials has garnered significant attention over the years, 

with major implications for a wide range of structural applications. A large body of work 

has focused on soft matter such as polymers and polymer composites, which are potential 

materials for large damping, owing to the inherent nature of viscous inter-molecular inter-

actions. Hard materials such as inorganic alloys and glasses have hitherto been relatively 

unexplored for damping applications due to their predominantly low loss modulus [148]. 

In this work, we demonstrated exceptional damping in a range of inorganic solids using 

non-equilibrium molecular dynamics simulations. Novel atomistic mechanisms responsi-

ble for damping in a wide range of frequencies have been uncovered for crystalline 

composites, superlattices, ordered and random alloys, and various glasses. The following 

sections summarize our key findings, provide relevance of these results for viscoelastic 

damping applications, and define scope for future work.  

 

6.1 Summary 

 

       This thesis has addressed the need for atomic-level simulations to gain mechanistic 

understanding of viscoelastic damping in hard inorganic solids. We used molecular dy-

namics oscillatory shear simulations to study viscoelastic damping in three classes of 

inorganic solids: (a) crystalline composites, (b) ordered and random alloys and (c) glasses. 

We observed disparate frequency dependence for these structures, over frequencies span-

ning three to five decades (MHz to THz). In addition to computing the complex shear 

modulus of materials, we uncovered novel atomistic mechanisms for damping. A detailed 

overview of the shear deformation methodology was presented in chapter 2. 

       In chapter 3, we considered high-frequency damping in crystalline composites con-

sisting of a stiff spherical inclusion in a soft matrix. We showed that exceptional damping 

 

 

Portions of this chapter may appear as: W. Peng, R. Ranganathan, P. Akcora, R. Ozisik and P. Keblinski, 

“Atomistic mechanisms for stiffening in polymer nanocomposites”, unpublished. 
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(up to 20 times larger than theoretical bounds) could be attained for intermediate volume 

fractions () of the stiff phase (0.2 < stiff < 0.6). With respect to shear frequency, a char-

acteristic peak in damping is observed at relatively high frequencies (0.3 < f < 1.5 THz).  

We showed that this frequency range has a strong overlap with the range of natural 

vibrational mode frequencies (phonon frequencies). Moreover, mode-dependent Grünei-

sen parameters that measure the anharmonocity in the coupling of phonon modes were 

observed to be about 2 to 3 times larger for the composite structure compared to homoge-

neous phases. High-frequency damping in composites is thus shown to originate from 

vibrational anharmonicity. 

Additionally, damping in these crystalline composites can be tuned by modifying the 

microstructure, inclusion fraction, and elastic properties (stiffness) of the components. In 

general, an increase in the inhomogeneity of deformation due to the composite microstruc-

ture leads to an enhancement in damping. Characteristics of damping observed for these 

crystalline composites are also exhibited by superlattice structures comprising soft and 

stiff crystalline components. We conclude that heterogeneous structures with a large stiff-

ness contrast between the component phases show promise as potential candidates for 

high-frequency damping applications. 

We extended our analysis to structures with a marked difference in their crystallinity; 

ordered, random, and glassy alloys, in chapter 4. We demonstrated distinct frequency-

dependent damping mechanisms for these structures modeled with a binary Lennard-Jones 

type potential. At high frequencies (of the order of THz), anharmonic coupling between 

vibrational modes result in large damping in glass and appreciable damping in the random 

alloy, with a pronounced peak in loss modulus for both structures. 

At frequencies below the peak damping frequency, the dependence of the loss mod-

ulus with frequency is well-described by a power law. The crystalline structures (ordered 

and random alloys) show this power law scaling for over 4 decades in frequency. In glass, 

this scaling is seen to exist only for about 2 decades in frequency, below which, we observe 

finite, nearly-constant damping for all frequencies.  

Persistent damping exhibited by glass is a unique feature arising from local defor-

mation of atomic clusters (soft-spots), over long time scales. We showed that the cluster 

size and volume fraction show a characteristic frequency-dependence. There appears to 
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be a threshold frequency below which, soft-spots are activated. We conclude that at high 

frequencies where anharmonic vibrational coupling is the dominant damping mechanism, 

cluster formation is naturally suppressed. 

The characteristics of damping observed in the binary glass motivated us to probe if 

this phenomenon is universal for all glasses. With this goal, viscoelasticity in five glass 

structures (Cu-Zr bulk metallic glass, Dzugutov glass, amorphous silicon, Wahnström 

glass, and amorphous silica) – modeled with various interaction potentials, were studied 

in chapter 5. A striking commonality is indeed observed in the frequency-dependent 

damping – a peak in the high-frequency regime, corresponding to the average vibrational 

frequency, is exhibited by all glasses. At intermediate and low frequencies, persistent, 

nearly-invariant damping is exhibited by all glasses, akin to that observed in the glass 

studied in chapter 4. 

A detailed analysis of the factors responsible for damping in the bulk metallic glass 

system showed that the quench rate for generating glass, shear amplitude, and shear tem-

perature play important roles in damping. Glass quenched with higher quench rates 

(corresponding to shallower energy minima) lead to larger damping and exhibit moduli 

that depend on the number of shear cycles. Shear amplitudes near and beyond the elastic 

limit exhibit a non-linear viscoelastic response. Larger shear temperatures result in larger 

loss moduli in the low-frequency limit. 

We thus conclude that oscillatory shear deformation simulations over shear frequen-

cies spanning several decades serve as a powerful probe to elucidate atomistic mechanisms 

for damping in hard inorganic materials. Theoretical understanding gained in this work 

would help design novel materials for high-frequency damping applications. 

 

6.2 Perspectives and future work  

 

The atomistic mechanisms for damping uncovered in this work provide tremendous 

scope for further analysis, especially in describing the quantitative dependence of damping 

on various system properties accurately. 

Damping at high frequencies (of the order of THz) has been shown to arise from 

anharmonic coupling of vibrational modes, as corroborated by mode-dependent Grüneisen 
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parameters. In addition to vibrational anharmonicity, the density of vibrational states 

should also play an important role in describing damping quantitatively. Further simula-

tions and analysis of the density of states, coupled with the Grüneisen parameters is 

expected to capture the quantitative dependence.  

Recently, Ding et. al [98] have demonstrated that the shear transformation zones re-

sponsible for propagation of plastic deformation in glasses have a strong correlation with 

the quasi-localized low-frequency vibrational modes. These modes, for the Cu-Zr bulk 

metallic glass was shown to correspond to local polyhedral clusters that have unfavorable 

coordination and as a result, have low energy barriers for rearrangement under the appli-

cation of shear. It will be interesting to observe if a similar phenomenon is at play during 

the oscillatory shear simulations considered in this work.  

Viscoelasticity studies have been performed on soft matter for several decades. The 

oscillatory shear methodology employed in this thesis has a far-reaching potential in its 

application to study novel microstructures not only in the field of hard materials, but also 

of soft matter such as polymer melts/blends, networks, and nanocomposites. Molecular-

level simulations and models have been employed extensively to study rheology and as-

sociated relaxation dynamics [20], [26], [28]–[30], [149], [150], and are ideally suited for 

capturing atomistic mechanisms responsible for the same.  

We have used the shear methodology developed in this thesis to study viscoelasticity 

in a variety of soft matter such as polymer blends with differing crosslink density, and in 

silicon nanoparticle-filled phenolic resin nanocomposites. One such study to understand 

atomistic mechanisms for stiffening in two-phase polymer nanocomposite systems is pre-

sented briefly in the following section. 

 

6.2.1 Stiffening in polymer nanocomposites 

 

Recently, Akcora et. al. [151] have observed reversible thermal stiffening in a nano-

composite system composed of silica nanoparticles adsorbed with poly(methyl 

methacrylate) (PMMA) and dispersed in poly(ethylene oxide) (PEO) matrix. Soft materi-

als typically soften upon heating owing to changes in volume; however, this PMMA-PEO-

silica nanocomposite remarkably stiffened upon heating. Moreover, this was a reversible 
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process, with stiffening and softening observed over multiple heating-cooling cycles. The 

primary reason responsible for this behavior was attributed to the contrast in chain dynam-

ics with temperature. PMMA and PEO have widely different glass transition temperatures 

(Tg) of 135 oC and -65 oC respectively. At temperatures below Tg of PMMA, i.e., when 

the PMMA phase is “glassy”, there is very little interaction between the adsorbed PMMA 

chains and the matrix PEO chains. However, at temperatures above the Tg of PMMA, the 

chains become mobile and couple dynamically with PEO. This enhanced interaction is 

thought to cause the observed enhancement in the elastic modulus [151].  

Motivated by this work, and to verify the role of temperature-dependent interactions 

in enhancing stiffness in heterogeneous nanocomposites, we proposed a coarse-grained 

model for describing interactions between the two types of polymer chains (say type “A” 

describing the low-Tg phase and type “B” corresponding to the high-Tg phase) and the 

nanoparticle.  

Briefly, a spherical nanoparticle in face centered cubic (FCC) crystal structure is mod-

eled via finitely extensible nonlinear elastic (FENE) bonds [152]: 

                                         𝑈𝐹𝐸𝑁𝐸 =  − 
𝑘

2
𝑅0

2𝑙𝑛 [1 −  (
𝑟

𝑅0
)

2

]                                                      (6.1) 

where, r is the distance between consecutive beads, 𝑅0 = 1.5𝜎0 is the largest length 

of the FENE bonds, 𝑘 = 30ε0/𝜎0
2 is the spring constant. Adjacent beads of the polymer 

chains have the same bonded interactions as well. Additionally, polymer beads interact 

via the nonbonded pair-wise Lennard Jones interaction that is cut off and shifted at dis-

tances larger than 𝑟 = 2.5 𝜎0: 

                 𝑈𝑆ℎ𝑖𝑓𝑡𝑒𝑑 𝐿𝐽 = {
4𝜀 [(

𝜎0

𝑟
)

12

−  (
𝜎0

𝑟
)

6

+ 4.08 × 10−3]  𝑟 < 2.5𝜎0

0                                                                   𝑟 ≥ 2.5𝜎0

                      (6.2) 

To create the phase with high Tg, we add 3-body angle interactions and 4-body dihe-

dral interactions to every 3 or 4 adjacent beads respectively. This results in the high and 

low-Tg phases with Tg of approximately 1.4 and 0.4 (in reduced units) respectively, thereby 

serving as a good surrogate system for the PMMA-PEO system described earlier. Both 

polymeric phases have a chain length of 50 beads, with the ratio of high to low-Tg phases 
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being 1:9. We tether the high-Tg phase to the nanoparticle to control the chain configura-

tions precisely. 

We create the two distinct configurations that mimic those corresponding to high and 

low temperatures. The high-temperature configuration corresponds to a “stretched” state, 

where the high-Tg chains are stretched out and interact with the low-Tg chains. The low-

temperature configuration corresponds to a “collapsed” state, where the high-Tg chains 

have collapsed on the nanoparticle and are essentially frozen. These configurations are 

created ad-hoc, with increased attraction between high-Tg phase and nanoparticle for the 

collapsed state and normal interactions for the stretched state. Once the collapsed state is 

equilibrated for sufficiently long time, we switch all interactions to correspond to those in 

the stretched state. 

We then equilibrate the structures at constant pressure and temperature of T = 0.5 

(reduced units) and perform oscillatory shear simulations to measure the storage modulus 

for the two configurations. Figure 6.1 shows the frequency-sweep simulation results for 

stretched and collapsed configurations, and additionally, for the pure low-Tg phase for 

reference. Also shown in the figure are atomistic snapshots for the two states.  

       As seen from the figure, the pure low-Tg polymer exhibits the lowest stiffness, owing 

to fully flexible chains. The collapsed state of the nanocomposite system shows an en-

hancement in stiffness due to reinforcement from the stiff nanoparticle and the 

surrounding high-Tg phase. However, a clear indication of even greater reinforcement is 

observed for the stretched case. This clearly shows that increased interaction between the 

two phases in the form of entanglements and slowing down of dynamics of the low-Tg 

phase are indeed responsible for the observed stiffening, confirming the hypothesis pro-

posed for stiffening in the PMMA-PEO-silica nanocomposite.  
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Figure 6.1: Variation of storage modulus with shear frequency for “collapsed” and “stretched” states 

for the nanocomposite system. Also shown for reference, is the modulus for the pure low-Tg polymer. 

 

 

       Through detailed analyses of several composite systems including hard materials and 

polymer composites, this thesis has demonstrated the efficacy of molecular-level shear 

simulations in understanding atomistic mechanisms responsible for viscoelastic damping. 

Indeed, a variety of novel microstructures and composite systems are yet to explored for 

engineering viscoelasticity; this thesis has attempted to address this need.  
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